Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The influence of cations and anions on some structural and electronic properties of single-walled zigzag boron nitride and aluminum nitride nanotubes: a computational study

  • 186 Accesses

  • 4 Citations


The influence of ions on the structural and electronic properties of single-walled zigzag boron nitride and aluminum nitride nanotubes has theoretically been investigated by inserting cations and anions into the center of the nanotube. The natural bond orbital analysis and the Bader’s quantum theory of atoms in molecules were also used to elucidate the characteristics of these complexes. The variations of geometrical parameters, complexation energy, HOMO–LUMO gap, isodensity surfaces of the HOMO and LUMO, radial buckling, electrophilicity index, electronic chemical potential, chemical hardness and softness have been calculated in the presence of ions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

  2. 2.

    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York

  3. 3.

    Peralta-Inga Z, Boyd S, Murray JS, O’Connor CJ, Politzer P (2003) Density functional tight-binding studies of carbon nanotube structures. Struct Chem 14:431–443

  4. 4.

    Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) A carbon nanotube cross structure as a nanoscale quantum device. Nano Lett 3:1187–1190

  5. 5.

    Saikia N, Rajkhowa S, Deka RC (2013) Density functional and molecular docking studies towards investigating the role of single-wall carbon nanotubes as nanocarrier for loading and delivery of pyrazinamide antitubercular drug onto pncA protein. J Comput Aided Mol Des 27:257–276

  6. 6.

    Jalili S, Jamali M (2012) The structural and electronic properties of monovalent sidewall functionalized double-walled carbon nanotubes. Chem Phys 402:91–95

  7. 7.

    Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

  8. 8.

    Loiseau A, Willaime F, Demoncy N, Schramcheko N, Hug G, Colliex C, Pascard H (1998) Boron nitride nanotubes. Carbon 36:743–752

  9. 9.

    Chen X, Ma J, Hu Z, Wu Q, Chen Y (2005) AlN nanotube: round or faceted? J Am Chem Soc 127:7982–7983

  10. 10.

    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967

  11. 11.

    Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081–5084

  12. 12.

    Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron-nitride nanotubes. Europhys Lett 28:335–340

  13. 13.

    Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys Rev Lett 76:4737–4740

  14. 14.

    Farahani M, Ahmadi TS, Seif A (2009) A DFT study of the nuclear magnetic response of the zigzag AlN–BN and BN–AlN nanotube junctions. J Mol Struct (Theochem) 913:126–130

  15. 15.

    Suryavanshi AP, Yu M, Wen J, Tang C, Bando Y (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84:2527–2529

  16. 16.

    Xiao Y, Yan XH, Cao JX, Ding JW, Mao YL, Xiang J (2004) Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys Rev B 69:205415–205419

  17. 17.

    Roohi H, Bagheri S (2013) Effect of axial strain on structural and electronic properties of zig-zag type of boron nitride nanotube (BNNT): a quantum chemical study. Struct Chem 24:409–420

  18. 18.

    Saikia N, Pati SK, Deka RC (2012) First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule. Appl Nanosci 2:389–400

  19. 19.

    Schmidt TM, Baierle RJ, Piquini P, Fazzio A (2003) Theoretical study of native defects in BN nanotubes. Phys Rev B 67:113407–113410

  20. 20.

    Xu FF, Bando Y, Golberg D, Ma RZ, Li YB, Tang CC (2003) Elastic deformation of helical–conical boron nitride nanotubes. J Chem Phys 119:3436–3440

  21. 21.

    Zhang M, Su ZM, Yan LK, Qiu YQ, Chen GH, Wang RS (2005) Theoretical interpretation of different nanotube morphologies among group III (B, Al, Ga) nitrides. Chem Phys Lett 408:145–149

  22. 22.

    Thapa R, Saha B, Das NS, Maiti UN, Chattopadhyay KK (2010) Self filling of Ni nanoparticles in amorphous AlN nanotubes and its field emission property. Appl Surf Sci 256:3988–3992

  23. 23.

    Zhao MW, Xia YY, Zhang DJ, Mei LM (2003) Stability and electronic structure of AlN nanotubes. Phys Rev B 68:235415–235418

  24. 24.

    Zhao MW, Xia YY, Tan ZY, Liu XD, Li F, Huang BD, Ji YJ, Mei LM (2004) Strain energy and thermal stability of single-walled aluminum nitride nanotubes from first-principles calculations. Chem Phys Lett 389:160–164

  25. 25.

    Zhang D, Zhang RQ (2003) Theoretical prediction on aluminum nitride nanotubes. Chem Phys Lett 371:426–432

  26. 26.

    Hou S, Zhang J, Shen Z, Zhao X, Xue Z (2005) First-principles calculations on the open end of single-walled AlN nanotubes. Phys E 27:45–50

  27. 27.

    Taniyasu Y, Kasu M, Makimoto T (2004) Field emission properties of heavily Si-doped AlN in triode-type display structure. Appl Phys Lett 84:2115–2117

  28. 28.

    Udomvech A, Kerdcharoen T, Osotchan T (2005) First principles study of Li and Li+ adsorbed on carbon nanotube: variation of tubule diameter and length. Chem Phys Lett 406:161–166

  29. 29.

    Ghosh S, Gadagkar V, Sood AK (2005) Strains induced in carbon nanotubes due to the presence of ions: ab initio restricted Hatree–Fock calculations. Chem Phys Lett 406:10–14

  30. 30.

    Fornasiero F, In JB, Kim S, Park HG, Wang Y, Grigoropoulos CP, Noy A, Bakajin O (2010) pH-tunable ion selectivity in carbon nanotube pores. Langmuir 26:14848–14853

  31. 31.

    Sumikama T, Saito S, Ohmine I (2006) Mechanism of ion permeation in a model channel: free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube. J Phys Chem B 110:20671–20677

  32. 32.

    Banerjee S, Murad S, Puri IK (2007) Preferential ion and water intake using charged carbon nanotubes. Chem Phys Lett 434:292–296

  33. 33.

    Won CY, Aluru NR (2009) A chloride ion-selective boron nitride nanotube. Chem Phys Lett 478:185–190

  34. 34.

    Zhu HY, Klein DJ, Seitz WA, March NH (1995) BN alternants: boron nitride cages and polymers. Inorg Chem 34:1377–1383

  35. 35.

    Dresselhaus MS, Dresselhaus G, Avouris P (1996) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin

  36. 36.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (revision A.02) Gaussian, Inc., Wallingford

  37. 37.

    Zhao J, Buldum A, Han J, Lu JP (2000) First-principles study of Li-intercalated carbon nanotube ropes. Phys Rev Lett 85:1706–1709

  38. 38.

    Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195

  39. 39.

    Wu J, Hagelberg F, Dinadayalane TC, Leszczynska D, Leszczynski J (2011) Do Stone–Wales defects alter the magnetic and transport properties of single-walled carbon nanotubes? J Phys Chem C 115:22232–22241

  40. 40.

    Xiao H, Tahir-Kheli J, Goddard WA (2011) Accurate band gaps for semiconductors from density functional theory. J Phys Chem Lett 2:212–217

  41. 41.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

  42. 42.

    Biegler König F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494

  43. 43.

    Martínez-Cifuentes M, Weiss-López BE, Santos LS, Araya-Maturana R (2014) Intramolecular hydrogen bond in biologically active o-carbonyl hydroquinones. Molecules 19:9354–9368

  44. 44.

    Haghdadi M (2013) DFT molecular orbital calculations and natural bond orbital analysis of 1,2,7-thiadiazepane conformers. Monatsh Chem 144:1653–1661

  45. 45.

    Li XY, Wang Y, Zheng SJ, Meng LP (2012) Substituent effects on the intramolecular hydrogen bond in 1-hydroxyanthraquinone: AIM and NBO analyses. Struct Chem 23:1233–1240

  46. 46.

    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

  47. 47.

    Glendening ED, Reed AE, Carpenter JE, Weinhold FA (1995) NBO, Version 3.1. Department of Chemistry, University of California-Irvine, Irvine, CA

  48. 48.

    Koopmans TA (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104–113

  49. 49.

    Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793

  50. 50.

    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

  51. 51.

    Parr RG, Szentpàly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

Download references


The authors thank the Vali-e-Asr University of Rafsanjan for financial supports and Computational Quantum Chemistry Laboratory for computational facilities.

Author information

Correspondence to Hamid Reza Masoodi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masoodi, H.R., Ebrahimi, A. & Bagheri, S. The influence of cations and anions on some structural and electronic properties of single-walled zigzag boron nitride and aluminum nitride nanotubes: a computational study. Struct Chem 26, 1013–1024 (2015). https://doi.org/10.1007/s11224-015-0560-5

Download citation


  • Boron nitride nanotube
  • Aluminum nitride nanotube
  • Cation
  • Anion
  • DFT calculations