Structural Chemistry

, Volume 26, Issue 1, pp 223–229 | Cite as

Supertetrahedral B80H20, C80H20, and Al80H20 analogs of dodecahedrane and their substituted molecules

  • Ruslan M. Minyaev
  • Ivan A. Popov
  • Vitaly V. Koval
  • Alexander I. Boldyrev
  • Vladimir I. Minkin
Original Research

Abstract

Stability of the new B80H20, C80H20, and Al80H20 frame complexes containing tetrahedral B4H, C4H, and Al4H fragments instead of the C–H fragments at the vertices of the dodecahedron scaffold, respectively, is predicted based on the DFT formalism (B3LYP/6-311+G(d, p)). AdNDP, NBO, and Elf analyses have shown that the chemical bonding in C80H20 can be described in terms of classical 2c–2e C–C σ bonds, while electron-deficient B80H20 and Al80H20 analogs are shown to exhibit both 2c–2e and 3c–2e σ bonds, responsible for the bonding between and within tetrahedral fragments, respectively.

Keywords

Frame complexes Dodecahedrane analogs Chemical bonding 3c–2e bonds AdNDP Elf 

Supplementary material

11224_2014_540_MOESM1_ESM.doc (218 kb)
Supplementary material 1 (DOC 217 kb)

References

  1. 1.
    Greenberg A, Hargittai I, Lee-Ruff E (1991) Strained organic molecules: a special issue of structural chemistry. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  2. 2.
    Hopf H (2000) Classics in hydrocarbon chemistry. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Maier G, Neudert J, Wolf O, Pappusch D, Sekiguchi A, Tanaka M, Matsuo T (2002) Tetrakis(trimethylsilyl)tetrahedrane. J Am Chem Soc 124:13819–13826 (and references cited therein)CrossRefGoogle Scholar
  4. 4.
    Eaton PE, Cole TW (1964) The cubane system. J Am Chem Soc 86:962–964CrossRefGoogle Scholar
  5. 5.
    Gallucci JC, Doecke CW, Paquette LA (1986) X-ray structure analysis of the pentagonal dodecahedrane hydrocarbon (CH)20. J Am Chem Soc 108:1343–1344 (and references cited therein)CrossRefGoogle Scholar
  6. 6.
    Akasaka T, Nagase S (eds) (2002) Endofullerenes. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. 7.
    Neretin IS, Slovohotov YuL (2004) Chemical crystallography of fullerenes. Usp Khim 73:492–525 (Russ Chem Rev 73:455–486)CrossRefGoogle Scholar
  8. 8.
    Cross RJ, Saunders M, Prinzbach H (1999) Putting helium inside dodecahedrane. Org Lett 1:1479–1481CrossRefGoogle Scholar
  9. 9.
    Mascal M (2002) The energetics of shooting ions into the dodecahedrane cage. J Org Chem 67:8644–8647CrossRefGoogle Scholar
  10. 10.
    Moran D, Stahl F, Jemmis ED, Schaefer HF III, Schleyer PVR (2002) Structures, stabilities, and ionization potentials of dodecahedrane endohedral complexes. J Phys Chem A 106:5144–5154CrossRefGoogle Scholar
  11. 11.
    Haunschild R, Frenking G (2009) Tetrahedranes. A theoretical study of singlet E4H4 molecules (E=C–Pb and B–Tl). Mol Phys 8-12:911-922 (and references cited therein)Google Scholar
  12. 12.
    Grubisic A, Li X, Stokes ST, Cordes J, Ganteför GF, Bowen KH, Kiran B, Jena P, Burgert R, Schnöckel H (2007) Closo-alanes (Al4H4, AlnHn+2, 4≤n≤8): a new chapter in aluminum hydride chemistry. J Am Chem Soc 129:5969–5975CrossRefGoogle Scholar
  13. 13.
    Li X, Grubisic A, Stokes ST, Cordes J, Ganteför GF, Bowen KH, Kiran B, Willis M, Jena P, Burgert R, Schnöckel H (2007) Unexpected stability of Al4H6: a borane analog? Science 315:356–358CrossRefGoogle Scholar
  14. 14.
    Li X, Grubisic A, Bowen KH, Kandalam AK, Kiran B, Ganteför GF, Jena P (2010) Communications: chain and double-ring polymeric structures: observation of AlnH3n+1 (n = 4–8) and Al4H14 . J Chem Phys 132:241103-1–241103-4Google Scholar
  15. 15.
    Kiran B, Kandalam AK, Xu J, Ding YH, Sierka M, Bowen KH, Schnöckel H (2012) Al6H18: a baby crystal of γ-AlH3. J Chem Phys 137:134303-1–134303-5CrossRefGoogle Scholar
  16. 16.
    Kiran B, Jena P, Li X, Grubisic A, Stokes ST, Ganteför GF, Bowen KH, Burgert R, Schnöckel H (2007) Magic rule for AlnHm magic clusters. Phys Rev Lett 98:256802-1–256802-4CrossRefGoogle Scholar
  17. 17.
    Minyaev RM (2012) Supertetrahedrane and its boron analogs. Russ Chem Bull 61:1673–1680CrossRefGoogle Scholar
  18. 18.
    Burdett JK, Lee S (1985) Moments method and elemental structures. J Am Chem Soc 107:3063–3082CrossRefGoogle Scholar
  19. 19.
    Minyaev RM, Avakyan VE (2010) Supertetrahedrane—a new possible carbon allotrope. Dokl Chem 434:253–256CrossRefGoogle Scholar
  20. 20.
    Minyaev RM, Getmanskii IV, Minkin VI (2014) Supertetrahedral aluminum and silicon structures and their hybrid analogues. Russ J Inorg Chem 59:332–336CrossRefGoogle Scholar
  21. 21.
    Sheng X-L, Yan Q-B, Ye F, Zheng Q-R, Su G (2011) T-carbon: a novel carbon allotrope. Phys Rev Lett 106:155703-1–155703155703CrossRefGoogle Scholar
  22. 22.
    Minyaev RM, Minkin VI (2013) Supertetrahedral cubane C32H8 and supertetrahedral dodecahedrane C80H20 with tetrahedral C4H fragments in the vertices. Mendeleev Commun 23:131–132CrossRefGoogle Scholar
  23. 23.
    Morrison JA (1991) Chemistry of the polyhedral boron halides and the diboron tetrahalides. Chem Rev 91:35–48CrossRefGoogle Scholar
  24. 24.
    Sekiguchi A (2009) In: Dodziuk H (ed) Strained hydrocarbons: beyond the van-t Hoff and Le Bel Hypothesis. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  25. 25.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  26. 26.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  27. 27.
    Stevens PJ, Devlin JF, Chabalowski JF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  28. 28.
    Bartlett RJ, Purvis GD III (1978) Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem. Int J Quant Chem 14:561–581CrossRefGoogle Scholar
  29. 29.
    Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Electron correlation theories and their application to the study of simple reaction potential surfaces. Int J Quant Chem 14:545–560CrossRefGoogle Scholar
  30. 30.
    Purvis GD III, Bartlett RJ (1982) A full coupled-cluster singles and doubles model—the inclusion of disconnected triples. J Chem Phys 76:1910–1918CrossRefGoogle Scholar
  31. 31.
    McLean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations. I. 2nd row atoms, Z = 11–18. J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  32. 32.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. Basis set for correlated wave-functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision D.01. Gaussian Inc, WallingfordGoogle Scholar
  34. 34.
    Sergeeva AP, Averkiev BB, Zhai H-J, Boldyrev AI, Wang LS (2011) All-boron analogues of aromatic hydrocarbons: B17 and B18 . J Chem Phys 134:224304-1–224304-11CrossRefGoogle Scholar
  35. 35.
    Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218CrossRefGoogle Scholar
  36. 36.
    Zubarev DYu, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217CrossRefGoogle Scholar
  37. 37.
    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218CrossRefGoogle Scholar
  38. 38.
    Weinhold F, Landis C (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. 39.
    Piazza ZA, Popov IA, Li W-L, Pal R, Zeng XC, Boldyrev AI, Wang L-S (2014) A photoelectron spectroscopy and Ab initio study of the structures and chemical bonding of the B25 cluster. J Chem Phys 141:034303-1–034303-10CrossRefGoogle Scholar
  40. 40.
    Popov IA, Boldyrev AI (2013) Computational probing of all-boron Li2nB2nH2n+2 polyenes. Comp Theor Chem 1004:5–11CrossRefGoogle Scholar
  41. 41.
    Popov IA, Popov VF, Bozhenko KV, Černušàk I, Boldyrev AI (2013) Structural changes in the series of boron-carbon mixed clusters CxB10−x (x = 3–10) upon substitution of boron by carbon. J Chem Phys 139:114307-1–114307-16Google Scholar
  42. 42.
    Popov IA, Li W-L, Piazza ZA, Boldyrev AI, Wang L-S (2014) Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and Ab initio study of CoB12 and RhB12 . J Phys Chem A 118:8098–8105CrossRefGoogle Scholar
  43. 43.
    Sergeeva AP, Popov IA, Piazza ZA, Li W-L, Romanescu C, Wang L-S, Boldyrev AI (2014) Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 47:1349–1358CrossRefGoogle Scholar
  44. 44.
    Popov IA, Li Y, Chen Z, Boldyrev AI (2013) ‘‘Benzation’’ of graphene upon addition of monovalent chemical species. Phys Chem Chem Phys 15:6842–6848CrossRefGoogle Scholar
  45. 45.
    Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036CrossRefGoogle Scholar
  46. 46.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  47. 47.
    Kohout M (2011) DGrid, version 4.6. RadebeulGoogle Scholar
  48. 48.
    Paraview: Parallel visualization application, version 3.98.1. http://paraview.org Accessed 20 Nov 2014
  49. 49.
    Baranov AI (2012) Visualization plug-in for paraview, version 3.98.0. Springer, DresdenGoogle Scholar
  50. 50.
    Zhurko GA. ChemCraft software, version 1.6. http://www.chemcraftprog.com Accessed 20 Nov 2014
  51. 51.
    Varetto U (2009) Molekel 5.4.0.8. Swiss National Supercomputing Centre, MannoGoogle Scholar
  52. 52.
    Olson JK, Boldyrev AI (2011) Ab initio search for global minimum structures of neutral and anionic B4H4 clusters. Chem Phys 379:1–5CrossRefGoogle Scholar
  53. 53.
    Olson JK, Boldyrev AI (2013) Planar to 3D transition in the B6Hy anions. J Phys Chem A 117:1614–1620CrossRefGoogle Scholar
  54. 54.
    Olson JK, Boldyrev AI (2011) Ab initio search for global minimum structures of neutral and anionic B4H5 clusters. optical isomerism in B4H5 and B4H5 . Chem Phys Lett 517:62–67CrossRefGoogle Scholar
  55. 55.
    Olson JK, Boldyrev AI (2011) Ab initio characterization of the flexural B3H8 anion found in the reversible dehydrogenation. Comput Theor Chem 967:1–4CrossRefGoogle Scholar
  56. 56.
    Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Bai H, Hu H-S, Piazza ZA, Tian W-J, Lu H-G, Wu Y-B, Mu Y-W, Wei G-F, Liu Z-P, Li J, Li S-D, Wang L-S (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ruslan M. Minyaev
    • 1
  • Ivan A. Popov
    • 2
  • Vitaly V. Koval
    • 1
  • Alexander I. Boldyrev
    • 2
  • Vladimir I. Minkin
    • 1
  1. 1.Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussian Federation
  2. 2.Department of Chemistry and BiochemistryUtah State UniversityLoganUSA

Personalised recommendations