Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical study on reaction mechanism of an N-heterocyclic carbene boryl azide with electron-deficient alkynes and nitriles

  • 198 Accesses

  • 3 Citations

Abstract

A theoretical investigation of the [3+2] cycloaddition reaction of the NHC-boryl azide with alkynes and nitriles has been presented by using the DFT (B3LYP) method. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce two different five-membered products (1,4-regioisomer and 1,5-regioisomer). The reaction pathway involves a one-step mechanism through a [3+2] addition where two nitrogen atoms of the N-heterocyclic carbene boryl azide adds to the C≡A (A=C or N) bond to form two new C–N or N–N bonds. For alkynes, the reactions can take place more easily to give 1,4-regioisomer product, while the reactions proceed for nitriles along the 1,5-regioisomer pathway. The reaction systems have high chemical reactivity with low barriers and could be favored. The calculations indicated that the cycloaddition reaction of alkynes and nitriles has the better regioselectivity. Our computational results are good consistent with the experimental observations of Merling and co-workers for [3+2]-dipolar cycloaddition reaction of N-heterocyclic carbene boryl azide.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Curran DP, Solovyev A, Makhlouf Brahmi M, Fensterbank L, Malacria M (2011) Angew Chem Int Ed 50:10294

  2. 2.

    Wang Y, Robinson GH (2011) Inorg Chem 50:12326

  3. 3.

    Makhouf Brahmi M, Monot J, Desage-El Murr M, Curran DP, Fensterbank L (2010) J Org Chem 75:6983

  4. 4.

    Chu Q, Makhlouf Brahmi M, Solovyev A, Ueng SH, Curran DP, Malacria M, Fensterbank L (2009) Chem Eur J 15:12937

  5. 5.

    Ueng SH, Fensterbank L, Lacote E, Malacria M, Curran DP (2010) Org Lett 12:3002

  6. 6.

    Monot J, Makhlouf Brahmi M, Ueng SH, Curran DP, Malacria M, Fensterbank L, Lacote E (2009) Org Lett 11:4914

  7. 7.

    Horn M, Mayr H, Lacote E, Merling E, Deaner J, Wells S, McFadden T, Curran DP (2012) Org Lett 14:82

  8. 8.

    Pan X, Lacote E, Lalevee J, Curran DP (2012) J Am Chem Soc 134:5669

  9. 9.

    Lindsay DM, McArthur D (2010) Chem Commun 46:2474

  10. 10.

    Ogawa A, Curran DP (1997) J Org Chem 62:450

  11. 11.

    Tehfe MA, MakhloufBrahmi M, Fouassier JP, Curran DP, Malacria M, Fensterbank L, Lacote E, Lalevee J (2010) Macromolecules 43:2261

  12. 12.

    Tehfe MA, Monot J, Malacria M, Fensterbank L, Fouassier JP, Curran DP, Lacote E, Lalevee J (2012) ACS Macro Lett 1:92

  13. 13.

    Bissinger P, Braunschweig H, Kraft K, Kupfer TA (2011) Angew Chem Int Ed 50:4704

  14. 14.

    McArthur D, Butts CP, Lindsay DM (2011) Chem Commun 47:6650

  15. 15.

    Wang Y, Xie Y, Abraham MY, Wei P, Schaefer HF, Robinson GH (2011) Organometallics 30:1303

  16. 16.

    Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2007) J Am Chem Soc 129:12412

  17. 17.

    Monot J, Solovyev A, Bonin-Dubarle H, Derat E, Curran DP, Robert M, Fensterbank L, Malacria M, Lacote E (2010) Angew Chem Int Ed 49:9166

  18. 18.

    Wang Y, Quillian B, Wei P, Xie YM, Wannere CS, King RB, Schaefer HF, Schleyer PVR (2008) J Am Chem Soc 130:3298

  19. 19.

    Braunschweig H, Chiu CW, Radacki K, Kupfer T (2010) Angew Chem Int Ed 49:2041

  20. 20.

    Bissinger P, Braunschweig H, Damme A, Dewhurst RD, Kupfer T, Radacki K, Wagner K (2011) J Am Chem Soc 133:19044

  21. 21.

    Jana A, Azhakar R, Tavcar G, Roesky HW, Objartel I, Stalke D (2011) Eur J Inorg Chem 2011:3686

  22. 22.

    Solovyev A, Geib SJ, Lacote E, Curran DP (2012) Organometallics 31:54

  23. 23.

    Curran DP, Boussonniere A, Geib SJ, Lacote E (2012) Angew Chem Int Ed 51:1602

  24. 24.

    Merling E, Lamm V, Geib SJ, Lacote E, Curran DP (2012) Org Lett 14:2690

  25. 25.

    Stephens PJ, Devlin FJ, Chabalowski CF (1994) J Phys Chem 98:11623

  26. 26.

    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976

  27. 27.

    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

  28. 28.

    Tomasi J, Persico M (1994) Chem Rev 94:2027

  29. 29.

    Mineva T, Russo N, Sicilia E (1998) J Comput Chem 19:290

  30. 30.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewfki VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford F, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Inc., Pittsburgh

Download references

Acknowledgments

This work was supported by the Lanzhou University of Arts and science research and innovation team of new chemical materials. We are grateful to the Gansu Province Supercomputer Center for essential support. We are grateful to the reviewers for their invaluable suggestions.

Conflict of interest

The author(s) confirm that this article content has no conflicts of interest.

Author information

Correspondence to Xing-hui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, K. & Niu, T. Theoretical study on reaction mechanism of an N-heterocyclic carbene boryl azide with electron-deficient alkynes and nitriles. Struct Chem 26, 599–606 (2015). https://doi.org/10.1007/s11224-014-0522-3

Download citation

Keywords

  • Density functional study
  • Cycloaddition reaction
  • Boryl azide
  • Alkynes
  • Nitriles