Structural Chemistry

, Volume 25, Issue 6, pp 1873–1880 | Cite as

A theoretical study of the thermodynamic and hydrogen-bond basicity of TEMPO radical and related nitroxides

Original Research

Abstract

The use of B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) calculations on TEMPO and four related nitroxide radicals having another oxygen functionality (ketone, hydroxyl and ether) has allowed to determine the relative basicities (thermodynamic and hydrogen-bonded) of the oxygen lone pair relative to the nitroxide radical. The differences are small, especially the B3LYP ones, but in all cases they favor the radical. This is consistent with experimental results in the case of the hydroxyl group but not in the case of the keto group.

Keywords

TEMPO Nitroxide Proton affinities Hydrogen bonds B3LYP MP2 G3(MP2)RAD 

Supplementary material

11224_2014_484_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 69 kb)

References

  1. 1.
    Pryor WA (1976) Free radicals in biology. Academic Press, New YorkGoogle Scholar
  2. 2.
    Berliner LJ (1998) Spin label applications in food science. In: Hemminga MA, van den Dries IJ (eds) Biological Magnetic Resonance., Spin labeling, the next milleniumPlenum Press, New YorkGoogle Scholar
  3. 3.
    Álvarez R, Vaz B, Gronemeyer H, de Lera AR (2014) Chem Rev 114:1–125CrossRefGoogle Scholar
  4. 4.
    Li X, Gao X, Shi W, Ma H (2014) Chem Rev 114:590–659CrossRefGoogle Scholar
  5. 5.
    Bagryanskaya EG, Marque SRA (2014) Chem Rev 114:5011–5056CrossRefGoogle Scholar
  6. 6.
    Kopple KD, Schamper TJ (1972) J Am Chem Soc 94:3644–3646CrossRefGoogle Scholar
  7. 7.
    Campbell KA, Peloquin JM, Diner BA, Tang XS, Chisholm DA, Britt RD (1997) J Am Chem Soc 119:4787–4788CrossRefGoogle Scholar
  8. 8.
    Isas JM, Langen R, Haigler HT, Hubbell WL (2002) Biochemistry 41:1464–1473CrossRefGoogle Scholar
  9. 9.
    Lietzow MA, Hubbell WL (2004) Biochemistry 43:3137–3151CrossRefGoogle Scholar
  10. 10.
    Kusnetzow AK, Altenbach C, Hubbell WL (2006) Biochemistry 45:5538–5550CrossRefGoogle Scholar
  11. 11.
    Gauden M, van Stokkum IHM, Key JM, Lührs DC, van Grondelle R, Hegemann P, Kennis JTM (2006) PNAS 103:10895–10900CrossRefGoogle Scholar
  12. 12.
    Lakshmana S, Hargis JC, Woodcock HL (2013) J Chem Inf Model 53:2951–2961CrossRefGoogle Scholar
  13. 13.
    Popova AM, Kálai T, Hideg K, Qin PZ (2009) Biochemistry 48:8540–8550CrossRefGoogle Scholar
  14. 14.
    Kroncke BM, Horanyi PS, Columbus L (2010) Biochemistry 49:10045–10060CrossRefGoogle Scholar
  15. 15.
    Romero FM, Ziessel R, Bonnett M, Pontillon Y, Ressouche E, Schweizer J, Delley B, Grand A, Paulsen C (2000) J Am Chem Soc 122:1298–1309CrossRefGoogle Scholar
  16. 16.
    Chion B, Lajzérowicz-Bonnetau J (1980) Acta Crystallogr Sect B B36:998–1000CrossRefGoogle Scholar
  17. 17.
    Franchi P, Lucarini M, Pedrielli P, Pedulli GF (2002) Chem Phys Chem 3:789–793Google Scholar
  18. 18.
    Ciunik Z (1997) J Mol Struct 412:27–37CrossRefGoogle Scholar
  19. 19.
    Ikryannikova LN, Ustynyuk YuL, Tikhonov AN (2010) Magn Reson Chem 48:337–349Google Scholar
  20. 20.
    Alkorta I, Elguero J, Solimannejad M (2014) J Phys Chem A 118:947–953CrossRefGoogle Scholar
  21. 21.
    Karoui H, Le Moigne F, Ouari O, Tordo P (2010) Stable radicals: fundamentals and applied aspects of odd-electron compounds. In: Hicks RG (ed) Nitroxide radicals: properties, synthesis and applications, vol 5. Wiley, Chichester, p 173Google Scholar
  22. 22.
    Hansen PE, Spanget-Larsen J (2003) The chemistry of phenols. In: Rappoport Z (ed) NMR and IR spectroscopy of phenols, vol 5. Wiley, Chichester, p 366Google Scholar
  23. 23.
    Shukla SK, Bahar RI (eds) (2004) Nano, quantum and molecular computing. Kluwer Academic Publishers, New YorkGoogle Scholar
  24. 24.
    Crabtree RH (2005) The organometallic chemistry of the transition metals. Wiley, HobokenCrossRefGoogle Scholar
  25. 25.
    Sheldon RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis. Wiley, WeinheimCrossRefGoogle Scholar
  26. 26.
    Fourmigué M (2008) Halogen bonding: fundamentals and applications, struct. bond. In: Metrangolo P, Resnati G (eds) Halogen bonding in conducting or magnetic molecular materials. Springer, Berlin, pp 181–207Google Scholar
  27. 27.
    Rappoport Z, Liebman JE, (eds): The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Part 1, John Wiley & Sons: Chichester, UK (2009) (on page 59 they wrote “the most famous nitroxide radical, TEMPO”)Google Scholar
  28. 28.
    Arslan H (2012) Polymerization. In: De Souza Gomes A (ed) Block and graft copolymerization by controlled/living radical polymerization methods, vol 13. InTech, Rijeka, p 279Google Scholar
  29. 29.
    Kokorin AI, (ed.) Nitroxides – Theory, Experiments and Applications, InTech: Rijeka, Croatia (2012), see Chapter 1Google Scholar
  30. 30.
    Kovac B, Ljubic I, Kivimäki A, Coreno M, Novak I (2014) Phys Chem Chem Phys 16:10734–10742CrossRefGoogle Scholar
  31. 31.
    Cao Q, Dornan LM, Rogan L, Hughes NL, Muldoon MJ (2014) Chem Commun 50:4524–4543CrossRefGoogle Scholar
  32. 32.
    Corzilius B, Andreas LB, Smith AA, Ni QZ, Griffin RG (2014) J Magn Reson 240:113–123CrossRefGoogle Scholar
  33. 33.
    Moad G, Rizzardo E (1995) Macromolecules 28:8722–8728CrossRefGoogle Scholar
  34. 34.
    Marshall DL, Christian ML, Gryn’ova G, Coote ML, Barker PJ, Blanksby SJ (2011) Org Biomol Chem 9:4936–4947CrossRefGoogle Scholar
  35. 35.
    Kwon G, Kwon H, Lee J, Han SY, Moon B, Oh HB, Sung BJ (2014) Bull Korean Chem Soc 25:770–774CrossRefGoogle Scholar
  36. 36.
    Rintoul L, Micallef AS, Bottle SE (2008) Spectrochim Acta A 70:713–717CrossRefGoogle Scholar
  37. 37.
    Giffin NA, Makramalla M, Hendsbee AD, Robertson KN, Sherren C, Pye CC, Masuda JD, Clyburne JAC (2011) Org Biomol Chem 9:3672–3680CrossRefGoogle Scholar
  38. 38.
    Gryn’ova G, Marshall DL, Blanksby SJ, Coote ML (2013) Nature Chem 5:474–481CrossRefGoogle Scholar
  39. 39.
    Maruta G, Takeda S, Imachi R, Ishida T, Nogami T, Yamaguchi K (1999) J Am Chem Soc 121:424–431CrossRefGoogle Scholar
  40. 40.
    Improta R, Kudin KN, Scuseria GE, Barone V (2002) J Am Chem Soc 124:113–120CrossRefGoogle Scholar
  41. 41.
    Russ JL, Gu J, Tsai KH, Glass T, Duchamp JC, Dorn HC (2007) J Am Chem Soc 129:7018–7027CrossRefGoogle Scholar
  42. 42.
    Mayer JM (2011) Acc Chem Res 44:36–46CrossRefGoogle Scholar
  43. 43.
    Linstrom PJ, Mallard WG Eds (retrieved January 18, 2014). NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov
  44. 44.
    Warren JJ, Mayer JM (2008) J Am Chem Soc 130:7546–7547CrossRefGoogle Scholar
  45. 45.
    Arnett EM, Wu CY (1960) J Am Chem Soc 82:4999–5000CrossRefGoogle Scholar
  46. 46.
    Laurence C (2000) Perspect Drug Discovery Des 18:39–60CrossRefGoogle Scholar
  47. 47.
    Berthelot M, Besseau F, Laurence C (1998) Eur J Org Chem 1998:925–931CrossRefGoogle Scholar
  48. 48.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  49. 49.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  50. 50.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  51. 51.
    Møller C (1934) Plesset MS 46:618–622Google Scholar
  52. 52.
    Gaussian 09 (2009), Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr., JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CTGoogle Scholar
  53. 53.
    Mennucci B, Cammi R (eds) (2007) Continuum solvation models in chemical physics. from theory to applications. Wiley, ChichesterGoogle Scholar
  54. 54.
    Henry DJ, Sullivan MB, Radom L (2003) J Chem Phys 118:4849–4860CrossRefGoogle Scholar
  55. 55.
    Koop B, Straub A, Schäfer HJ (2001) Tetrahedron Asymm 12:341–345CrossRefGoogle Scholar
  56. 56.
    Hawker CJ, Bosman AW, Harth E (2001) Chem Rev 101:3661–3688CrossRefGoogle Scholar
  57. 57.
    Israeli A, Patt M, Oron M, Samuni A, Kohen R, Goldstein S (2005) Free Rad. Biol. Med. 38:317–324CrossRefGoogle Scholar
  58. 58.
    Vasbinder MJ, Bakac A (2007) Inorg Chem 46:2322–2327CrossRefGoogle Scholar
  59. 59.
    Sen VD, Golubev VA (2009) J Phys Org Chem 22:138–143CrossRefGoogle Scholar
  60. 60.
    Warren JJ, Mayer JM (2010) J Am Chem Soc 132:7784–7793CrossRefGoogle Scholar
  61. 61.
    Sajenko I, Pilepic V, Brala CJ, Ursic S (2010) J Phys Chem A 114:3423–3430CrossRefGoogle Scholar
  62. 62.
    Ma Y, Loyns C, Price P, Chechik V (2011) Org Biomol Chem 9:5573–5578CrossRefGoogle Scholar
  63. 63.
    Alkorta I, Elguero J, Roussel C, Vanthuyne N, Piras P (2012) Adv Heterocycl Chem 105:1–188CrossRefGoogle Scholar
  64. 64.
    Chenesseau S, Ferré N, Marque SRA, Siri D (2009) ChemPhysChem 10:2419–2428CrossRefGoogle Scholar
  65. 65.
    Shenderovich IG, Kecki Z, Wawer I, Denisov GS (1997) Spectrosc Lett 30:1515–1523CrossRefGoogle Scholar
  66. 66.
    Nakajima S, Kato E, Minatozaki M, Nishide H (2011) Macromol Symp 304:1–7CrossRefGoogle Scholar
  67. 67.
    Wu A, Mader EA, Datta A, Hrovat DA, Borden WT, Mayer JA (2009) J Am Chem Soc 131:11985–11997CrossRefGoogle Scholar
  68. 68.
    Johansson A, Kollman P, Rothenberg S (1973) Theor Chim Acta 29:167–172CrossRefGoogle Scholar
  69. 69.
    Morokuma K, Kitamura K (1981) In: Politzer P (ed) Chemical applications of atomic and molecular electrostatic potential. Plenum Press, New YorkGoogle Scholar
  70. 70.
    Frisch MJ, Del Bene JE, Binkley JS, Schaefer HF III (1986) J Chem Phys 84:2279–2289CrossRefGoogle Scholar
  71. 71.
    King BF, Weinhold F (1995) J Chem Phys 103:333–347CrossRefGoogle Scholar
  72. 72.
    González L, Mó O, Yáñez M (1999) J Chem Phys 111:3855–3861CrossRefGoogle Scholar
  73. 73.
    Rincón L, Almeida R, García-Aldea D, Diez y Riega H (2001) J Chem Phys 114:5552–5561CrossRefGoogle Scholar
  74. 74.
    Alkorta I, Blanco F, Elguero J (2008) J Phys Chem A 112:6753–6759CrossRefGoogle Scholar
  75. 75.
    Alkorta I, Elguero J, Popelier PLA (2011) J Phys Org Chem 24:744–750Google Scholar
  76. 76.
    Allen FH, Kennard O (1993) Chem Des Autom News 8:31–37Google Scholar
  77. 77.
    Allen FH (2002) Acta Crystallogr Sect B 58:380–388CrossRefGoogle Scholar
  78. 78.
    Allen FH, Motherwell WDS (2002) Acta Crystallogr Sect. B 58:407–422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de Química Médica (C.S.I.C.)MadridSpain

Personalised recommendations