Structural Chemistry

, Volume 26, Issue 1, pp 11–22 | Cite as

Effect of the Stone–Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study

  • Hossein Roohi
  • Mahjoubeh Jahantab
  • Melody Yakta
Original Research


Using density functional theory, effect of the Stone–Wales (SW) defect on the structural and electronic properties of (6,0) zigzag single-walled boron nitride nanotube (BNNT) under axial tension and compression was investigated at B3LYP/6-31+G(d) level of theory. The calculated binding energy for SW defective BNNT is estimated to be smaller than pristine BNNT. In Stone–Wales defected BNNT (SW–BNNT), the defect region serves as a nucleation site for fraction. It is predicted that the fracture is started from the N–N bond connecting the pentagon and heptagon rings, which is different from fracture mechanism proposed for carbon nanotubes (CNT) with similar location of SW defects. Increase in the energy difference between defective and perfect BNNT, ∆E = E SW − E perfect, was predicted upon axial tension. According to our calculation, band gap energy of the SW–BNNT decreases under axial tension and increases under axial compression. It is predicted that the SW–BNNT and in turn its tensile form are more suitable than perfect one for photoconductivity applications.


BNNT Stone–Wales defect Tension strain Electronic properties DFT NBO 

Supplementary material

11224_2014_466_MOESM1_ESM.doc (261 kb)
Supplementary material 1 (DOC 261 kb)


  1. 1.
    Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49(7):5081–5084CrossRefGoogle Scholar
  2. 2.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966–967CrossRefGoogle Scholar
  3. 3.
    Chen Y, Zou J, Campbell SJ, Le Caer G (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84(13):2430–2432CrossRefGoogle Scholar
  4. 4.
    Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840):932–934CrossRefGoogle Scholar
  5. 5.
    Golberg D, Costa PMFJ, Lourie O, Mitome M, Bai X, Kurashima K, Zhi C, Tang C, Bando Y (2007) Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett 7(7):2146–2151CrossRefGoogle Scholar
  6. 6.
    Chang CW, Han WQ, Zettl A (2005) Thermal conductivity of B-C-N and BN nanotubes. Appl Phys Lett 86(17):173102CrossRefGoogle Scholar
  7. 7.
    Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335–340CrossRefGoogle Scholar
  8. 8.
    Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128(5–6):501–503CrossRefGoogle Scholar
  9. 9.
    Pozrikidis C (2009) Effect of the stone-wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch Appl Mech 79(2):113–123CrossRefGoogle Scholar
  10. 10.
    Miyamoto Y, Rubio A, Berber S, Yoon M, Tománek D (2004) Spectroscopic characterization of Stone-Wales defects in nanotubes. Phys Rev B 69(12):121413CrossRefGoogle Scholar
  11. 11.
    Li Y, Zhou Z, Golberg D, Bando Y, Schleyer PVR, Chen Z (2008) Stone-Wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J Phys Chem C 112(5):1365–1370CrossRefGoogle Scholar
  12. 12.
    Zobelli A, Ewels CP, Gloter A, Seifert G, Stephan O, Csillag S, Colliex C (2006) Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett 6(9):1955–1960CrossRefGoogle Scholar
  13. 13.
    Piquini P, Baierle RJ, Schmidt TM, Fazzio A (2005) Formation energy of native defects in BN nanotubes: an ab initio study. Nanotechnology 16(6):827CrossRefGoogle Scholar
  14. 14.
    Schmidt TM, Baierle RJ, Piquini P, Fazzio A (2003) Theoretical study of native defects in BN nanotubes. Phys Rev B 67(11):113407CrossRefGoogle Scholar
  15. 15.
    Gou G, Pan BC, Shi L (2007) Theoretical study of size-dependent properties of BN nanotubes with intrinsic defects. Phys Rev B 76(15):155414CrossRefGoogle Scholar
  16. 16.
    Bai X, Golberg D, Bando Y, Zhi C, Tang C, Mitome M, Kurashima K (2007) Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Lett 7(3):632–637CrossRefGoogle Scholar
  17. 17.
    Zhang P, Crespi VH (2000) Plastic deformations of boron-nitride nanotubes: an unexpected weakness. Phys Rev B 62(16):11050CrossRefGoogle Scholar
  18. 18.
    Song J, Jiang H, Wu J, Huang Y, Hwang KC (2007) Stone-Wales transformation in boron nitride nanotubes. Scripta Mater 57(7):571–574CrossRefGoogle Scholar
  19. 19.
    Mielke SL, Troya D, Zhang S, Li JL, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390(4–6):413–420CrossRefGoogle Scholar
  20. 20.
    Chandra N, Namilae S, Shet C (2004) Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Phys Rev B 69(9):094101CrossRefGoogle Scholar
  21. 21.
    Song J, Jiang H, Shi DL, Feng XQ, Huang Y, Yu MF, Hwang KC (2006) Stone-Wales transformation: precursor of fracture in carbon nanotubes. Int J Mech Sci 48(12):1464–1470CrossRefGoogle Scholar
  22. 22.
    Tserpes KI, Papanikos P (2007) The effect of Stone-Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos Struct 79(4):581–589CrossRefGoogle Scholar
  23. 23.
    Bettinger HF, Dumitrică T, Scuseria GE, Yakobson BI (2002) Mechanically induced defects and strength of BN nanotubes. Phys Rev B 65(4):041406CrossRefGoogle Scholar
  24. 24.
    Hu S, Li Z, Zeng XC, Yang J (2008) Electronic structures of defective boron nitride nanotubes under transverse electric fields. J Phys Chem C 112(22):8424–8428CrossRefGoogle Scholar
  25. 25.
    An W, Wu X, Yang JL, Zeng XC (2007) Adsorption and surface reactivity on single-walled boron nitride nanotubes containing stone-wales defects. J Phys Chem C 111(38):14105–14112CrossRefGoogle Scholar
  26. 26.
    Zhou Z, Li Y (2009) How different are BN nanotubes from carbon nanotubes? J Comput Theor Nanosci 6(2):327–334CrossRefGoogle Scholar
  27. 27.
    Ju SP, Wang YC, Lien TW (2011) Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study. Nanoscale Res Lett 6(1):1–11CrossRefGoogle Scholar
  28. 28.
    Mortazavi B, Rémond Y (2012) Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Physica E 44(9):1846–1852CrossRefGoogle Scholar
  29. 29.
    Roohi H, Bagheri S (2013) Effect of axial strain on structural and electronic properties of zig-zag type of boron nitride nanotube (BNNT): a quantum chemical study. Struct Chem 24(2):409–420CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery AJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004). Gaussian 03, revision C01 Gaussian Inc, WallingfordGoogle Scholar
  31. 31.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  32. 32.
    Glendening ED, Reed AE, Carpenter JE, Weinhold FA (1995) Department of Chemistry, University of California-Irvine, Irvine, CA. NBO, Version 31Google Scholar
  33. 33.
    Roohi H, Bagheri S (2008) Atomic and electronic structures of finite single-walled BN nanotubes: hybrid DFT calculations. J Mol Struct (Thoechem) 856(1–3):46–58CrossRefGoogle Scholar
  34. 34.
    Cox BJ, Hill JM (2008) Geometric model for boron nitride nanotubes incorporating curvature. J Phys Chem C 112(42):16248–16255CrossRefGoogle Scholar
  35. 35.
    Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76(8):085407CrossRefGoogle Scholar
  36. 36.
    Xu H, Zhang RQ, Zhang XH, Rosa AL, Frauenheim T (2007) Structural and electronic properties of ZnO nanotubes from density functional calculations. Nanotechnology 18:485713CrossRefGoogle Scholar
  37. 37.
    Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) DFT-based reactivity study of (5,5) armchair boron nitride nanotube (BNNT). Chem Phys Lett 565:69–73CrossRefGoogle Scholar
  38. 38.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  39. 39.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRefGoogle Scholar
  40. 40.
    Seneta P, Aparicio F (2007) Density functional theory fragment descriptors to quantify the reactivity of a molecular family: application to amino acids. J Chem Phys 126:145105CrossRefGoogle Scholar
  41. 41.
    Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Ann Rep C 106:118CrossRefGoogle Scholar
  42. 42.
    Gyftopoulos EP, Hatsopoulos GN (1968) Quantum-thermodynamic definition of electronegativity. Proc Natl Acad Sci USA 60:786CrossRefGoogle Scholar
  43. 43.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity-the density functional viewpoint. J Chem Phys 68:380CrossRefGoogle Scholar
  44. 44.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516CrossRefGoogle Scholar
  45. 45.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1(1–6):104–113CrossRefGoogle Scholar
  46. 46.
    Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hossein Roohi
    • 1
  • Mahjoubeh Jahantab
    • 1
  • Melody Yakta
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations