Structural Chemistry

, Volume 25, Issue 6, pp 1607–1623 | Cite as

A density functional study of oxorhenium(V) complexes incorporating quinoline or isoquinoline carboxylic acids: structural, spectroscopic, and electronic properties

  • B. Machura
  • M. Wolff
Original Research


Density functional theory calculations have been performed for understanding factors responsible for the different stabilities of particular isomers of [ReOX(N–O)2], where N–O represents carboxylate ligand chelating to the oxorhenium core through N and O atoms. DFT/B3LYP calculations have been carried out for all possible potential isomers of [ReO(OMe)(2-qc)2] (1), [ReOCl(2-qc)2] (2), [ReO(OMe)(1-iqc)2] (3), and [ReOCl(1-iqc)2] (4). Interestingly, complex 1 shows a very rare example of trans [O=Re–OMe] conformation with two chelating N,O-donor ligands in the equatorial plane, whereas the others were found to be the most common structure of [ReOX(N–O)2] with cis-N,N arrangement and chloride or methoxy ligand cis to the Re=O moiety. A thorough study of the calculated structures clearly shows that molecular structure of complexes [ReOX(N–O)2] is predominantly governed by multiply bonded oxo ligand, but the isomeric preferences may be tuned by careful selection of N–O ligands.


Oxorhenium(V) complexes Isomers DFT and TD-DFT calculations NBO analysis 



The Gaussian09 calculations were carried out in the Wrocław Centre for Networking and Supercomputing, WCSS, Wrocław, Poland under calculational Grant No. 18. This work was financed by the Polish National Science Centre (NCN), under Grant No. DEC-2011/03/N/ST5/04522.

Supplementary material

11224_2014_438_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 60 kb)


  1. 1.
    Jürgens S, Herrmann WA, Kühn FE (2013) J Organomet Chem. doi: 10.1016/j.jorganchem.2013.07.042 Google Scholar
  2. 2.
    Blower P (2006) Dalton Trans 6:1705–1711CrossRefGoogle Scholar
  3. 3.
    Schibli R, Schubiger PA (2002) Eur J Nucl Med Mol Imaging 29:1529–1542CrossRefGoogle Scholar
  4. 4.
    Volkert WT, Hoffman TJ (1999) Chem Rev 99:2269–2292CrossRefGoogle Scholar
  5. 5.
    Dilworth JR, Parrot SJ (1998) Chem Soc Rev 27:43–55CrossRefGoogle Scholar
  6. 6.
    Kühn FE, Santos AM, Herrmann WA (2005) Dalton Trans 15:2483–2491CrossRefGoogle Scholar
  7. 7.
    Kühn FE, Scherbaum A, Herrmann WA (2004) J Organomet Chem 689:4149–4164CrossRefGoogle Scholar
  8. 8.
    Romão CC, Kühn FE, Herrmann WA (1997) Chem Rev 97:3197–3246CrossRefGoogle Scholar
  9. 9.
    Sachse A, Mösch-Zanetti NC, Lyashenko G, Wielandt JW, Most K, Magull J, Dall’Antonia F, Pal A, Herbst-Irmer R (2007) Inorg Chem 46:7129–7135CrossRefGoogle Scholar
  10. 10.
    Schröckeneder A, Traar P, Raber G, Baumgartner J, Belaj F, Mösch-Zanetti NC (2009) Inorg Chem 48:11608–11614CrossRefGoogle Scholar
  11. 11.
    Traar P, Schröckeneder A, Judmaier M, Belaj F, Baumgartner J, Sachse A, Mösch-Zanetti NC (2010) Eur J Inorg Chem 36:5718–5727CrossRefGoogle Scholar
  12. 12.
    Traar P, Schachner JA, Steiner L, Sachse A, Volpe M, Mösch-Zanetti NC (2011) Inorg Chem 50:1983–1990CrossRefGoogle Scholar
  13. 13.
    Terfassa B, Traar P, Volpe M, Mösch-Zanetti NC, Raju VJT, Megersa N, Retta N (2011) Eur J Inorg Chem 28:4434–4440CrossRefGoogle Scholar
  14. 14.
    Machura B, Wolff M, Benoist E, Schachner JA, Mösch-Zanetti NC (2013) Dalton Trans 42:8827–8837CrossRefGoogle Scholar
  15. 15.
    Machura B, Wolff M, Tabak D, Schachner JA, Mösch-Zanetti NC (2012) Eur J Inorg Chem 2012:3764–3773CrossRefGoogle Scholar
  16. 16.
    Machura B, Kusz J (2008) Polyhedron 27:187–195CrossRefGoogle Scholar
  17. 17.
    Gatto S, Gerber TIA, Bandoli G, Perils J, du Preez JGH (1998) Inorg Chim Acta 269:235–240CrossRefGoogle Scholar
  18. 18.
    Gerber TIA, Luzipo DG, Mayer P (2005) J Chem Crystallogr 35:39–41CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09, Revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  20. 20.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  21. 21.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  22. 22.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  23. 23.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124CrossRefGoogle Scholar
  24. 24.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  25. 25.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  26. 26.
    Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  27. 27.
    Clark T, Chandrasekhar J, Schleyer PVR (1983) J Comput Chem 4:294–301CrossRefGoogle Scholar
  28. 28.
    Krishnam R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650654Google Scholar
  29. 29.
    Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) Chem Phys Lett 197:499–505CrossRefGoogle Scholar
  30. 30.
    Casida ME (1996) In: Seminario JM (ed) Recent developments and applications in modern density functional theory, theoretical and computational chemistry, vol 4. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Cances MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  32. 32.
    Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260CrossRefGoogle Scholar
  33. 33.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158CrossRefGoogle Scholar
  34. 34.
    Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54CrossRefGoogle Scholar
  35. 35.
    Reed E, Curtiss LA, Weinhold F (1988) Chem Rev 88:899Google Scholar
  36. 36.
    Yumata NC, Habarurema G, Mukiza J, Gerber TIA, Hosten E, Taherkhani F, Nahali M (2013) Polyhedron 62:89–103CrossRefGoogle Scholar
  37. 37.
    Majumder S, Bhattacharya A, Naskar JP, Mitra P, Chowdhury S (2013) Inorg Chim Acta 399:166–171CrossRefGoogle Scholar
  38. 38.
    Mayer JM (1988) Inorg Chem 27:3899–3903CrossRefGoogle Scholar
  39. 39.
    Pearson RG (1973) Hard and soft acids and bases. Dowden, Hutchinson and Ross, StroudsbergGoogle Scholar
  40. 40.
    Pearson RG (1993) Acc Chem Res 26:250–255CrossRefGoogle Scholar
  41. 41.
    Pearson RG (1997) Chemical hardness: application from molecules to solid. Wiley, WeinheimCrossRefGoogle Scholar
  42. 42.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  44. 44.
    Chattaraj PK, Maiti B (2003) J Am Chem Soc 125:2705–2710CrossRefGoogle Scholar
  45. 45.
    Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  46. 46.
    Vektariene A, Vektaris G, Svoboda J (2009) ARKIVOC 7:311–329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Crystallography, Institute of ChemistryUniversity of SilesiaKatowicePoland

Personalised recommendations