Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The density functional theory study CO oxidation catalyzed by subnanometer AlAg n (n = 1–3) clusters

  • 194 Accesses

  • 1 Citations

Abstract

The efficiency of AlAg n (n = 1–3) alloy clusters toward CO oxidation is demonstrated from first-principles theory. It is found that these subnanometer species transform into reaction complexes which catalyze CO oxidation through the Langmuir–Hinshelwood path. It is shown that mixing two different metals (Al and Ag) can have beneficial effects on the catalytic activity and the alloyed AlAg3 cluster is proposed as the best effective nanocatalysts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ravandi AB, R M, Fattah Z (2013) Chem Eng J 219:124

  2. 2.

    Ligthart DAJM, van Santen RA, Hensen EJM (2011) A Chem Int Ed 123:5418

  3. 3.

    Deng Q, Zhao L, Gao X, Zhang M, Luo Y, Zhao Y (2013) Nanoscale 10:1002

  4. 4.

    Hsu LC, T M-K, Lu YH, Chen HT (2013) J Phys Chem C 117:433

  5. 5.

    Wang Y, W G, Du J, Yang M, Wang J (2012) J Phys Chem A 116:93

  6. 6.

    Peng G, M LR, Knudsen J, Vang RT, Lægsgaard E, Besenbacher F, Mavrikakis M (2010) J Phys Chem C 114:21579

  7. 7.

    Li X, K GM (2007) Anal Chem 79:8940

  8. 8.

    Göltl F, Bulo RE, Hafner J, Sautet P (2013) J. Phys. Chem. Lett. 4:2244

  9. 9.

    Miksa D, Brill TB (2002) Ind Eng Chem Res 41:5151

  10. 10.

    Pomfret MB, O JC, Walker RA (2007) Anal Chem 79:2367

  11. 11.

    Barsan N, Stetter JR, Findlay M Jr, Goepel W (1999) Anal Chem 71:2512

  12. 12.

    Chen HT, Chang J-G, Ju SP, Chen HL (2010) J Comput Chem 31:258

  13. 13.

    Kaden WE, K WA, Roberts FS, Kane M, Anderson (2012) J. Chem. Phys. 136:204705

  14. 14.

    Robles R, Khanna SN (2010) Phy. Rev. B 82:085428

  15. 15.

    Vogel D, S C, Suchorski Y, Trinchero A, Schlçgl R, Grçnbeck H, Rupprechter G, Angew (2012) Chem. Int. Ed. 51:10041

  16. 16.

    Liu C, Tan Y, Lin S, Li H, Wu X, Li L, Pei Y, Zeng XC (2013) J Am Chem Soc 135:2583

  17. 17.

    Kalita B, Deka R (2010) J Comput Chem 10:2476

  18. 18.

    Krajc M, Hafner J (2012) J Phys Chem C 116:6307

  19. 19.

    Yen H, S Y, Kaliaguine S, Mesostructured FK (2012) Angew Chem Int Ed 124:12198

  20. 20.

    Chou JP, Pai WW, Kuo C, Lee JD, Lin CH, Wei CM (2009) J Phys Chem C 113:13151

  21. 21.

    Kilimis DA, PapageorgiouJournal DG (2010) J Mol Struct 939:112

  22. 22.

    Su HY, Zeng Z, Bao XH, Li WX (2009) J Phys Chem C 113:8266

  23. 23.

    Gao Y, Shao N, Bulusu S, Zeng XC (2008) J Phys Chem C 112:8234

  24. 24.

    Negreiros FR, Sementa L, Barcaro G, Vajda S, Aprá E, Fortunelli A (2012) ACS Catal 2:1860

  25. 25.

    Johanek V, Stara I, Matolin V (2002) Surf Sci 507:92

  26. 26.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.04. Gaussian, Inc, Pittsburgh

  27. 27.

    Perdew JP, Burke K (1996) Simple. Phys. Rev. Lett. 77:3865

  28. 28.

    Hay PJ, Wadt WR (1985) Chem Phys 82:270

  29. 29.

    Hay PJ, Wadt WR (1985) Chem Phys 82:299

  30. 30.

    Peng C, Ayala PY, Bernhard Schlegel H (1996) J Comput Chem 17:49

  31. 31.

    Glendening ED, Reed AE, Carpenter JE, Weinhold (2001) FNBO, Version 3.1, Theoretical chemistry institute. University of Wisconsin Madison, Madison

  32. 32.

    Gonzalez C, Schlegel HB (1989) J Comput Chem 90:2154

  33. 33.

    Gonzalez C, Schlegel HB (1990) J Comput Chem 54:5523

  34. 34.

    Huber KP, Herzberg G (1979) Molecular spectra molecular structures 4: constants of diatomic molecules. Van Nostrand Reinhold, New York

  35. 35.

    Morse MD (1986) Chem Rev 86:1049

  36. 36.

    Rosen B (1970) Spectroscopic data relative to diatomic molecules. Oxford University Press, New York

  37. 37.

    Ruddick VJ, Badyal JPS (1997) EPC Lang 13:469

  38. 38.

    Joshi AM, Delgass WN, Thomson KT (2006) J Phys Chem B 110:23373

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant No. 2013145) and Shanxi Normal University (SD2013CXCY-65) and Teaching Reform Project of Shanxi Normal University (SD2013JGXM-51).

Author information

Correspondence to Ling Guo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wen, C., Guo, L., Dong, X. et al. The density functional theory study CO oxidation catalyzed by subnanometer AlAg n (n = 1–3) clusters. Struct Chem 25, 1305–1315 (2014). https://doi.org/10.1007/s11224-014-0407-5

Download citation

Keywords

  • AlAg n clusters
  • CO oxidation
  • Mechanism
  • Density functional theory