Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dioxetanones’ peroxide bond as a charge-shifted bond: implications in the chemiluminescence process

  • 203 Accesses

  • 6 Citations

Abstract

Six dioxetanone molecules, ranging in complexity from simple dioxetanone to firefly dioxetanone, were studied by performing M06/6-311G(d,p) calculations. The quantum theory of atoms in molecules and the electron localization function was applied to analyze the peroxide and carbon–carbon bonds of the dioxetanone ring. Both approaches demonstrated that the peroxide bond is not covalent, but charge-shifted. This means that for this bond the covalent “electron sharing” is relatively unimportant, and it is the stabilizing resonance energy that causes the bonding. For the contrary, the carbon–carbon bond is covalent. These discoveries indicate that no biradical species should be formed in the dioxetanone decomposition, and that the most probable rate-determining step should be the carbon–carbon cleavage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Marques SM, Esteves da Silva JCG (2009) IUBMB Life 61:6

  2. 2.

    Inouye S (2010) Cell Mol Life Sci 67:387

  3. 3.

    Hosseinkhani S (2011) Cell Mol Life Sci 68:1167

  4. 4.

    Niwa K, Ichino Y, Kumata S, Nakajima Y, Hiraishi Y, Kato D, Viviani VR, Ohmiya Y (2010) Photochem Photobiol 86:1046

  5. 5.

    Ando Y, Niwa K, Yamada N, Enomoto T, Irie T, Kubota H, Ohmiya Y, Akiyama H (2008) Nat Photonics 2:44

  6. 6.

    Roda A, Guardigli M (2012) Anal Bioanal Chem 402:69

  7. 7.

    Alam R, Zylstra J, Fontaine DM, Branchini BR, Maye MM (2013) Nanoscale 5:5303

  8. 8.

    Li J, Chen L, Du L, Li M (2013) Chem Soc Rev 42:662

  9. 9.

    Vieira J, Pinto da Silva L, Esteves da Silva JCG (2012) J Photochem Photobiol B 117:33

  10. 10.

    Pinto da Silva L, Esteves da Silva JCG (2011) J Chem Theory Comput 7:809

  11. 11.

    Matsumoto M (2004) J Photochem Photobiol C 5:27

  12. 12.

    Pinto da Silva L, Esteves da Silva JCG (2012) ChemPhysChem 13:2257

  13. 13.

    Navizet I, Liu YJ, Ferré N, Roca-Sanjuán D, Lindh R (2011) ChemPhysChem 12:3064

  14. 14.

    Schuster GB (1979) Acc Chem Res 12:366

  15. 15.

    Isobe H, Takano Y, Okumura M, Kuramitsu S, Yamaguchi K (2005) J Am Chem Soc 127:8667

  16. 16.

    Yue L, Liu YJ, Fang WH (2012) J Am Chem Soc 134:11632

  17. 17.

    Pinto da Silva L, Esteves da Silva JCG (2013) ChemPhysChem 14:1071

  18. 18.

    Richardson WH, O’Neal HE (1972) J Am Chem Soc 94:8665

  19. 19.

    McCapra F (1970) Pure Appl Chem 24:611

  20. 20.

    Kearns DR (1971) Chem Rev 71:395

  21. 21.

    Adam W, Baader WJ (1985) J Am Chem Soc 107:410

  22. 22.

    Turro NJ, Lechtken P (1973) J Am Chem Soc 95:264

  23. 23.

    Yue L, Roca-Sanjuán D, Lindh R, Ferré N, Liu YJ (2012) J Chem Theory Comput 8:4359

  24. 24.

    Liu F, Liu YJ, De Vico L, Lindh R (2009) J Am Chem Soc 131:6181

  25. 25.

    Pinto da Silva L, Esteves da Silva JCG (2012) J Comput Chem 33:2118

  26. 26.

    Pinto da Silva L, Esteves da Silva JCG (2012) J Comput Chem 33:2127

  27. 27.

    Pinto da Silva L, Esteves da Silva JCG (2013) Int J Quantum Chem 113:1709

  28. 28.

    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

  29. 29.

    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

  30. 30.

    Schmidt SP, Schuster GB (1978) J Am Chem Soc 100:5559

  31. 31.

    Pinto da Silva L, Esteves da Silva JCG (2011) ChemPhysChem 12:951

  32. 32.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, Inc., Wallingford

  33. 33.

    Lu T, Chen F (2012) J Comput Chem 33:580

  34. 34.

    Bader RFW (1985) Acc Chem Res 18:9

  35. 35.

    Silvi B, Savin A (1994) Nature 371:683

  36. 36.

    Shaik S, Danovich D, Wu W, Hiberty PC (2009) Nat Chem 1:443

  37. 37.

    Rzepa HS (2011) J Chem Theory Comput 7:97

  38. 38.

    Jenkins S, Kirk SR, Guevara-García A, Ayers PW, Echegaray E, Toro-Labbe A (2011) Chem Phys Lett 510:18

  39. 39.

    Vidal I, Melchor S, Dobado JÁ (2008) J Phys Chem B 112:3414

  40. 40.

    Mitra S, Chandra AK, Gashnga PM, Jenkins S, Kirk SR (2012) J Mol Model 18:4225

  41. 41.

    Nasiri M, Shakourian-Fard M, Fattahi A (2012) J Phys Org Chem 25:803

  42. 42.

    Bil A, Latajka Z (2004) Chem Phys 303:43

  43. 43.

    Bil A, Latajka Z (2005) Chem Phys Lett 406:366

  44. 44.

    Allouche AR (2011) J Comput Chem 32:174

Download references

Acknowledgments

Financial support from Fundação para a Ciência e Tecnologia (FCT, Lisbon) (Programa Operacional Temático Factores de Competitividade (COMPETE) e comparticipado pelo Fundo Comunitário Europeu (FEDER) (Project PTDC/QUI/71366/2006) is acknowledged. A Ph.D. grant to Luís Pinto da Silva (SFRH/76612/2011), attributed by FCT, is also acknowledged.

Author information

Correspondence to Joaquim C. G. Esteves da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 238 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pinto da Silva, L., Esteves da Silva, J.C.G. Dioxetanones’ peroxide bond as a charge-shifted bond: implications in the chemiluminescence process. Struct Chem 25, 1075–1081 (2014). https://doi.org/10.1007/s11224-013-0383-1

Download citation

Keywords

  • Firefly dioxetanone
  • Charge-shifted bonds
  • Chemiluminescence
  • Peroxide bond
  • Electron localization function
  • Quantum theory of atoms in molecules