Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Fully and partially exohydrogenated Si80 fullerene cage: a DFT study

  • 143 Accesses

  • 3 Citations

Abstract

We have performed a density functional study to investigate electronic and magnetic properties of fully and partially exohydrogenation in the Si80 fullerene cage based on NMR parameters, nucleus-independent chemical shift (NICS) indices and natural population analysis. Hydrogenation of 20 silicons inside and 60 silicons outside results in two distinct values for the 29Si σ iso, and also for 29Si Δσ. NICS yields negative value of −1.5 ppm at the cage center of the fully exohydrogenated fullerene, Si80H80. However, NICS yields positive value of 1.5 ppm at the cage center of the partially exohydrogenated fullerene, H20@Si80H60, then becomes more negative along the axis toward the center of pentagon until reaching −3.0 ppm at the ring center (and −4.3 at the point 1 Å away from the ring center outside), suggesting that in this case pentagons can be considered as aromatic fragments. H20@Si80H60 cage is composed of negatively charged hydrogen atoms and positively charged silicon atoms, indicating electron transfer from silicon atoms on the surfaces of the cage to the chemically bonded hydrogen atoms. A decreasing trend is observed for 1H σ iso values as the natural charges of hydrogen sites in these fullerenes increase while no regular trend is observed for the chemical shielding anisotropy Δσ of hydrogen atoms.

Graphical Abstract

.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

  2. 2.

    Zdetsis AD (2010) J Phys Chem C 114:10775–10781

  3. 3.

    Jia J, Lai Y-N, Wu H-S, Jiao HJ (2009) Phys Chem C 113:6887–6890

  4. 4.

    Kumar V, Kawazoe Y (2003) Phys Rev Lett 90:055502

  5. 5.

    Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503

  6. 6.

    Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733

  7. 7.

    Kumar V, Kawazoe Y (2002) Phys Rev Lett 88:235504

  8. 8.

    Paquette LA, Ternansky TJ, Balogh DW, Kentgen G (1983) J Am Chem Soc 105:5446

  9. 9.

    Zdetsis AD (2007) Phys Rev B 76:075402

  10. 10.

    Karttunen AJ, Linnolahti M, Pakkanen TA (2007) J Phys Chem C 111:2545

  11. 11.

    Kumar V, Kawazoe Y (2007) Phys Rev B 75:155425

  12. 12.

    Zdetsis AD (2009) Phys Rev B 80:195417

  13. 13.

    Zdetsis AD (2009) Phys Rev B 79:195437

  14. 14.

    Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354

  15. 15.

    Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) J Chem Soc Chem Comm 1:1423

  16. 16.

    Johnson RD, Meijer G, Salem JR, Bethune DS (1991) J Am Chem Soc 113:3619

  17. 17.

    Ettl R, Chao I, Diederich F, Whetten RL (1991) Nature 353:149

  18. 18.

    Diederich F, Whetten RL (1992) Acc Chem Res 25:119

  19. 19.

    Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y (1992) Nature 357:142

  20. 20.

    Taylor R, Langley GJ, Avent AG, Dennis TJS, Kroto HW, Walton DRM (1993) J Chem Soc Perkin Trans 2:1029

  21. 21.

    Hennrich FH, Michel RH, Fischer A, Richard-Schneider S, Gilb S, Kappes MM, Fuchs D, Bürk M, Kobayashi K, Nagase S (1996) Angew Chem Int Ed Engl 35:1732

  22. 22.

    Dennis TJS, Kai T, Tomiyama T, Shinohara H  (1998) Chem Commun 5:619

  23. 23.

    Tagmatarchis N, Avent AG, Prassides K, Dennis TJS, Shinohara H (1999) Chem Commun 3:1023

  24. 24.

    Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251

  25. 25.

    Anafcheh M, Ghafouri R, Hadipoura NL (2012) Physica E 44:2099–2104

  26. 26.

    Anafcheh M, Ghafouri R (2013) Physica E 48:13–20

  27. 27.

    Sun G, Kertesz M (2000) J Phys Chem A 104:7398–7403

  28. 28.

    Ghafouri R, Anafcheh M (2013) J Fluorine Chem 145:88–94

  29. 29.

    Peralta JE, Barone V, Scuseria GE, Contreras RH (2004) J Am Chem Soc 126:7428–7429

  30. 30.

    Anafcheh M, Ghafouri R (2012) Struct Chem 23:1921–1929

  31. 31.

    Ghafouri R, Anafcheh M (2012) J Phys Chem Solids 73:1378–1384

  32. 32.

    Saunders M, Cross RJ, Jimenez-Vazuez HA, Schimshi R, Khong A (1996) Science 271:1693–1697

  33. 33.

    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) J Am Chem Soc 118:6317–6318

  34. 34.

    Chen Z, King RB (2005) Chem Rev 105:3613–3642

  35. 35.

    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Chem Rev 105:3842–3888

  36. 36.

    Ghafouri R, Anafcheh M (2012) Physica E 44:1386–1391

  37. 37.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

  38. 38.

    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

  39. 39.

    Wang L, Li D, Yang D (2006) Mol Simul 32:663–666

  40. 40.

    McPherson LD, Drees M, Khan SI, Strassner T, Abu-Omar MM (2004) Inorg Chem 43:4036–4050

  41. 41.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc., Pittsburgh

  42. 42.

    Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

  43. 43.

    Zhang Y, Wu A, Xu X, Yan Y (2007) J Phys Chem A 111:9431

  44. 44.

    Becke AD (1993) J Chem Phys 98:5648–5652

  45. 45.

    Ditchfield R, Hehre WJJ, Pople A (1971) J Chem Phys 54:724–728

  46. 46.

    Sun G, Kertesz M (2000) Chem Phys Lett 328:387–395

  47. 47.

    Heine T, Goursot A, Seifert G, Weber J (2001) J Phys Chem A 105:620–626

Download references

Acknowledgments

We are grateful to Prof. Seik Weng Ng for providing us the G98W software and hardware (machine time) facilities. Technical support of the chemistry center at shahid Beheshti university is greatly acknowledged.

Author information

Correspondence to Maryam Anafcheh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghafouri, R., Anafcheh, M. & Zahedi, M. Fully and partially exohydrogenated Si80 fullerene cage: a DFT study. Struct Chem 25, 575–581 (2014). https://doi.org/10.1007/s11224-013-0320-3

Download citation

Keywords

  • Fully and partially exohydrogenation
  • DFT
  • NMR
  • NICS
  • NPA