Advertisement

Structural Chemistry

, Volume 23, Issue 6, pp 1819–1830 | Cite as

Geometries and stabilities of transition metals doped perfect and Stone–Wales defective armchair (5,5) boron nitride nanotubes

  • Sarawut Tontapha
  • Nongnit Morakot
  • Vithaya Ruangpornvisuti
  • Banchob Wanno
Original Research

Abstract

The binding abilities of transition metals (TMs) (TMs = Ni, Pd, and Pt) on perfect and Stone–Wales (SW) defective armchair (5,5) single-walled boron nitride nanotubes (BNNTs) were investigated using density functional theory method at the B3LYP/LanL2DZ level. The geometrical parameters and electronic properties of all BNNTs doped with TM atoms are reported. The strongest binding energy of Ni doped on SW defective BNNT of −91.87 kcal/mol was found. The binding abilities of the most stable of TMs on the BNNTs are in order: Ni/SW2–BNNT(ZN) > Pt/SW2–BNNT(ZB) > Pd/SW2–BNNT(ZB). In all case, energy gaps of MTs doped perfect and defective BNNTs are obviously lower than their undoped nanotubes.

Keywords

Adsorption Boron nitride nanotube Density functional theory Ni-, Pd-, and Pt-doped BNNTs 

Notes

Acknowledgments

Financial support from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education to Sarawut Tontapha is gratefully acknowledged. The financial support (Grant No. MRG5180141) to BW by the Thailand Research Fund is gratefully acknowledged. We also thank the Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, for providing facility.

Supplementary material

11224_2012_9988_MOESM1_ESM.doc (3.9 mb)
Supplementary material 1 (DOC 4035 kb)

References

  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86CrossRefGoogle Scholar
  3. 3.
    Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155CrossRefGoogle Scholar
  4. 4.
    Azadi S, Moradian R, Shafaee AM (2010) Comp Mater Sci 49:699CrossRefGoogle Scholar
  5. 5.
    Wu J, Hagelberg F, Dinadayalane TC, Leszczynska D, Leszczynski J (2011) J Phys Chem C 115:22232CrossRefGoogle Scholar
  6. 6.
    Pouch JJ, Alterovitz SA (eds) (1990) Synthesis and properties of boron nitride, material science forum, vol 54–55. Trans Tech Publishers, Zurich, SwitzerlandGoogle Scholar
  7. 7.
    Ishii T, Sato T, Sekikawa Y, Iwata M (1981) J Cryst Growth 52:285CrossRefGoogle Scholar
  8. 8.
    Paine RT, Narula CK (1990) Chem Rev 90:73CrossRefGoogle Scholar
  9. 9.
    An W, Wu X, Yang JL, Zeng XC (2007) J Phys Chem C 111:14105CrossRefGoogle Scholar
  10. 10.
    Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) ACS Nano 4:2979CrossRefGoogle Scholar
  11. 11.
    Baierle RJ, Piquini P, Schmidt TM, Fazzio A (2006) J Phys Chem B 110:21184CrossRefGoogle Scholar
  12. 12.
    Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Phys Rev Lett 76:4737CrossRefGoogle Scholar
  13. 13.
    Arenal R, Stephan O, Kociak MD, Taverna AL, Colliex C (2005) Phys Rev Lett 95:127601CrossRefGoogle Scholar
  14. 14.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966CrossRefGoogle Scholar
  15. 15.
    Zhi C, Bando Y, Tang C, Golberg D (2010) Mater Sci Eng, R 70:92CrossRefGoogle Scholar
  16. 16.
    Ma RZ, Golberg D, Bando Y, Sasaki T (2004) Philos Trans R Soc Lond Ser A 362:2161CrossRefGoogle Scholar
  17. 17.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501CrossRefGoogle Scholar
  18. 18.
    Li Y, Zhou Z, Golberg D, Bando Y, Schleyer PVR, Chen Z (2008) J Phys Chem C 112:1365CrossRefGoogle Scholar
  19. 19.
    Zheng JW, Zhang LP, Wu P (2010) J Phys Chem C 114:5792CrossRefGoogle Scholar
  20. 20.
    Zhao JX, Ding YH (2008) J Phys Chem C 112:2558CrossRefGoogle Scholar
  21. 21.
    Chen YK, Liu LV, Wang YA (2010) J Phys Chem C 114:12387Google Scholar
  22. 22.
    Wu X, Yang JL, Zeng XC (2006) J Chem Phys 125:044704CrossRefGoogle Scholar
  23. 23.
    Zhang JM, Wang SF, Chen LY, Xu KW, Ji V (2010) Eur Phys J B 76:289CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2008) Gaussian 03, Revision E.01. Gaussian, Inc, WallingfordGoogle Scholar
  25. 25.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  26. 26.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  27. 27.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270CrossRefGoogle Scholar
  28. 28.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284CrossRefGoogle Scholar
  29. 29.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  30. 30.
    Sabin JR, Trickey SB, Apell SP, Oddershede J (2000) Int J Quantum Chem 77:358–366CrossRefGoogle Scholar
  31. 31.
    Koopmans T (1933) Physica 1:104–113CrossRefGoogle Scholar
  32. 32.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839–845CrossRefGoogle Scholar
  33. 33.
    Pearson RG (2001) Hard and soft acids and bases. Dowden, Hutchison & Ross, Stroudsburg, PAGoogle Scholar
  34. 34.
    Teatum ET, Gschneider KA Jr, Waber JT (1968) Los Alamos National Laboratory Report No. LA-4003Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sarawut Tontapha
    • 1
  • Nongnit Morakot
    • 1
  • Vithaya Ruangpornvisuti
    • 2
  • Banchob Wanno
    • 1
  1. 1.Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of ScienceMahasarakham UniversityMaha SarakhamThailand
  2. 2.Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations