Structural Chemistry

, Volume 24, Issue 3, pp 827–835 | Cite as

Gas-phase structures of dithietane derivatives, including an electron diffraction study of 1,3-dithietane 1,1,3,3-tetraoxide

  • Derek A. Wann
  • Andrzej Bil
  • Paul D. Lane
  • Heather E. Robertson
  • David W. H. Rankin
  • Eric Block
Original Research

Abstract

The gas electron diffraction structure of 1,3-dithietane 1,1,3,3-tetraoxide has been determined using the SARACEN method to restrain parameters that otherwise could not be refined. Quantum chemical calculations for this species showed that the potential-energy surface was extremely flat, and this was also observed from the diffraction experiments. The difference in goodness of fit for the diffraction experiment between a planar ring and one puckered by up to 9° was very small. Calculations were also performed for a variety of similar species with different numbers of oxygen atoms attached to the sulphur atoms. Topological analysis of the electron density, and electron localisation function studies of the relevant molecules, have given deeper insight into the nature of their bonding, and suggested how spatial localisation of electron pairs may influence the molecular structure.

Keywords

Gas electron diffraction Dithietanes Quantum chemical calculations SARACEN AIM theory Electron localisation function 

Notes

Acknowledgments

We thank the EPSRC for funding the electron diffraction research (EP/F037317 and EP/I004122). A.B. would like to thank the Wrocław Supercomputer and Networking Center for a grant of computer time, and the HPC-Europa2 project of the European Commission for funding a trip to Edinburgh that led to this collaboration. E.B. acknowledges support from the National Science Foundation (Grant CHE 0744578). The authors would like to acknowledge the use of the EPSRC UK National Service for Computational Chemistry Software (NSCCS) at Imperial College London in carrying out this work. This research also made use of resources provided by the Edinburgh Compute and Data Facility (http://www.ecdf.ed.ac.uk/), which is partially supported by the eDIKT initiative (http://www.edikt.org.uk).

Supplementary material

11224_2012_179_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1637 kb)

References

  1. 1.
    Contreras JG, Gerli LA, Hurtado SM, Madariaga ST (2004) J Chil Chem Soc 49:327CrossRefGoogle Scholar
  2. 2.
    Contreras JG, Madariaga ST (2001) Bioinorg Chem 29:57Google Scholar
  3. 3.
    Luh T-Y, Leung M-K (2006) Product subclass 2: 1,3-dithietanes. In Otera J (ed) Sci Synth 30:203Google Scholar
  4. 4.
    Zoller U (1996) Four-membered rings with two sulfur atoms. In: Padwa A (ed) Comprehensive heterocyclic chemistry II, 1B. Pergamon, Oxford, p 1113CrossRefGoogle Scholar
  5. 5.
    Kalasinsky VF, Block E, Powers DE, Harris WC (1979) Appl Spectrosc 33:361CrossRefGoogle Scholar
  6. 6.
    Block E, Bazzi AA, Lambert JB, Wharry SM, Anderson KK, Dittmer DC, Patwardhan BH, Smith DJH (1980) J Org Chem 45:4807CrossRefGoogle Scholar
  7. 7.
    Block E, Bock H, Mohmand S, Rosmus P, Solouki B (1976) Angew Chem 88:380CrossRefGoogle Scholar
  8. 8.
    Block E, Penn RE, Olsen RJ, Sherwin PF (1976) J Am Chem Soc 98:1264CrossRefGoogle Scholar
  9. 9.
    Block E (2012) J Sulfur Chem. doi: 10.1080/17415993.2012.717294
  10. 10.
    Suzuki E, Ishiguro R, Watari F (1990) J Mol Struct 238:71CrossRefGoogle Scholar
  11. 11.
    Suzuki E, Yamazaki M, Shimizu K (2007) Vib Spectrosc 43:269CrossRefGoogle Scholar
  12. 12.
    Gusel’nikov LE, Avakyan VG, Guselnikov SL (2007) Heteroatom Chem 18:704CrossRefGoogle Scholar
  13. 13.
    Krantz KE, Senning A, Shim I (2010) J Mol Struct (Theochem) 944:83CrossRefGoogle Scholar
  14. 14.
    Vandeputte AG, Sabbe MK, Reyniers M-F, Marin GB (2011) Chem Eur J 17:7656CrossRefGoogle Scholar
  15. 15.
    Badawi HM, Foerner W, Al-Suwaiyan A–A (2008) J Mol Struct 875:189CrossRefGoogle Scholar
  16. 16.
    Block E, Corey ER, Penn RE, Renken TL, Sherwin PF, Bock H, Hirabayashi T, Mohmand S, Solouki B (1982) J Am Chem Soc 104:3119CrossRefGoogle Scholar
  17. 17.
    Contreras JG, Madariaga ST (1999) J Mol Struct (Theochem) 466:111CrossRefGoogle Scholar
  18. 18.
    Pigenet C, Jeminet G, Lumbroso H (1973) C R Acad Sci C 272:2023Google Scholar
  19. 19.
    Block E, Corey ER, Penn RE, Renken TL, Sherwin PF (1976) J Am Chem Soc 98:5715CrossRefGoogle Scholar
  20. 20.
    Smith Z, Seip R (1976) Acta Chem Scand A 30:759CrossRefGoogle Scholar
  21. 21.
    Chiang JF, Lu KC (1977) J Phys Chem 81:1682CrossRefGoogle Scholar
  22. 22.
    Mack H-G, Oberhammer H, Waterfeld A (1991) J Mol Struct 249:297CrossRefGoogle Scholar
  23. 23.
    Opitz G, Mohl HR (1969) Angew Chem Int Ed 8:73Google Scholar
  24. 24.
    Huntley CM, Laurenson GS, Rankin DWH (1980) J Chem Soc Dalton Trans 954Google Scholar
  25. 25.
    Fleischer H, Wann DA, Hinchley SL, Borisenko KB, Lewis JR, Mawhorter RJ, Robertson HE, Rankin DWH (2005) Dalton Trans 3221Google Scholar
  26. 26.
    Hinchley SL, Robertson HE, Borisenko KB, Turner AR, Johnston BF, Rankin DWH, Ahmadian M, Jones JN, Cowley AH (2004) Dalton Trans 2469Google Scholar
  27. 27.
    Ross AW, Fink M, Hilderbrandt R (1992) International tables for crystallography. In: Wilson AJC (ed) International tables for crystallography, vol C. Kluwer Academic Publishers, Dordrecht, p 245Google Scholar
  28. 28.
    Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., Wallingford CTGoogle Scholar
  29. 29.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  30. 30.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  31. 31.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639CrossRefGoogle Scholar
  32. 32.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  33. 33.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  34. 34.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  35. 35.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  36. 36.
    Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem 10:1CrossRefGoogle Scholar
  37. 37.
    Raghavachari K, Pople JA (1978) Int J Quantum Chem 14:91CrossRefGoogle Scholar
  38. 38.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968CrossRefGoogle Scholar
  39. 39.
    Sipachev VA (1985) J Mol Struct (Theochem) 121:143CrossRefGoogle Scholar
  40. 40.
    Sipachev VA (2001) J Mol Struct 567:67CrossRefGoogle Scholar
  41. 41.
    Bader RFW (1991) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Bader RFW (1991) Chem Rev 91:893CrossRefGoogle Scholar
  43. 43.
    Bader RFW (1998) J Phys Chem A 102:7314CrossRefGoogle Scholar
  44. 44.
    Keith TA (2011) AIMAll (v11.03.14). TK Gristmill Software, Overland ParkGoogle Scholar
  45. 45.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  46. 46.
    Silvi B, Savin A (1994) Nature 371:683CrossRefGoogle Scholar
  47. 47.
    Savin A, Nesper R, Wengert S, Fässler T (1997) Angew Chem Int Ed Engl 36:1808CrossRefGoogle Scholar
  48. 48.
    Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod, ParisGoogle Scholar
  49. 49.
    Block E, Glass RS, DeOrazio R, Lichtenberger DL, Pollard JR, Russell EE, Schroeder TB, Thiruvazhi M, Toscano PJ (1997) Synlett 525Google Scholar
  50. 50.
    Wilson GS, Swanson DD, Klug JT, Glass RS, Ryan MD, Musker WK (1979) J Am Chem Soc 101:1040CrossRefGoogle Scholar
  51. 51.
    Brain PT, Morrison CA, Parsons S, Rankin DWH (1996) J Chem Soc Dalton Trans 4589Google Scholar
  52. 52.
    Blake AJ, Brain PT, McNab H, Miller J, Morrison CA, Parsons S, Rankin DWH, Robertson HE, Smart BA (1996) J Phys Chem 100:12280CrossRefGoogle Scholar
  53. 53.
    Mitzel NW, Rankin DWH (2003) Dalton Trans 3650Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Derek A. Wann
    • 1
  • Andrzej Bil
    • 2
  • Paul D. Lane
    • 1
  • Heather E. Robertson
    • 1
  • David W. H. Rankin
    • 1
  • Eric Block
    • 3
  1. 1.School of ChemistryUniversity of EdinburghEdinburghUK
  2. 2.Faculty of ChemistryUniversity of WrocławWrocławPoland
  3. 3.Department of ChemistryUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations