Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular conformational structures of 2-fluorobenzoyl chloride, 2-chlorobenzoyl chloride, and 2-bromobenzoyl chloride by gas electron diffraction and normal coordinate analysis aided by quantum chemical calculations

Abstract

The gas phase molecular structures and conformational compositions of 2-fluorobenzoyl chloride, 2-chlorobenzoyl chloride, and 2-bromobenzoyl chloride have been investigated using gas electron diffraction data obtained from experiments performed in the laboratories of the University of Oslo and Oregon State University. The refinements on the experimental data have been aided by normal coordinate calculations as well as extensive ab initio molecular orbital and density functional theory calculations up to the levels of MP4(SDQ) and B3LYP with larger basis sets up to the level of 6-311 + G(2d,p) for the computed molecular geometries, electronic energies, vibrational zero-point energies and entropy corrections, gas mixture conformational compositions, and MP2(fc) quantum mechanical force fields. The three title molecules each exist in the gas phase as two stable non-planar conformers anti and gauche with respect to the halogen atom positions with anti the lower energy conformer in each case. Among the three title molecules there have been found considerable experimental and theoretical support for several trends in molecular or conformational behavior with increasing ortho halogen atomic size: An increasing although disputable trend in the C=O bond distance values; an increasing trend in the average phenyl ring C–C bond distance values; an increasing trend in the contribution of the gauche conformer to the gaseous mixture lowering the standard free energy difference values (ΔG o) correspondingly; and an increasing deviation from full planarity (C s symmetry) in both the anti and the gauche conformers of the title molecules with increasing ortho halogen atomic size. Only in the anti conformer of 2-fluorobenzoyl chloride does the experimental data refinements suggest close to full planarity for these 2-halobenzoyl chloride molecules.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Onda M, Asai M, Kohno T, Kikuchi Y, Yamaguchi I (1987) J Mol Struct 162:183

  2. 2.

    Durig JR, Bist HD, Furic K, Qiu J, Little TS (1985) J Mol Struct 129:45

  3. 3.

    Borisenko KB, Bock CW, Hargittai I (1996) J Phys Chem 100:7426

  4. 4.

    Schäfer L, Samdal S, Hedberg K (1976) J Mol Struct 31:29

  5. 5.

    Borisenko KB, Bock CW, Hargittai I (1994) J Phys Chem 98:1442

  6. 6.

    Borisenko KB, Hargittai I (1993) J Phys Chem 97:4080

  7. 7.

    Aarset K, Page EM, Rice DA (2006) J Phys Chem A 110:9014

  8. 8.

    Aarset K, Page EM, Rice DA (2008) J Phys Chem A 112:10040

  9. 9.

    Correll T, Larsen NW, Pedersen T (1980) J Mol Struct 65:43

  10. 10.

    Batyukhnova OG, Sadova NI, Vilkov LV, Pankrushev YA (1985) J Struct Chem 26:175 (English translation)

  11. 11.

    Batyukhnova OG, Sadova NI, Syshchikov YN, Vilkov LV, Pankrushev YA (1988) J Struct Chem 29:53 (English translation)

  12. 12.

    Joshi UC, Manchanda GG, Naithani NK, Sharma SN (1988) Can J Spectrosc 33:75

  13. 13.

    Joshi UC, Manchanda GG, Naithani NK, Sharma SN (1992) Can J Appl Spectrosc 37:68

  14. 14.

    Hagen K, Hedberg K (1973) J Am Chem Soc 95:1003

  15. 15.

    Gundersen G, Hedberg K (1969) J Chem Phys 51:2500

  16. 16.

    Ross AW, Fink M, Hilderbrandt R (1992) International tables of crystallography, vol C: 245. Kluwer Academic Publishers, Dordrecht

  17. 17.

    Hedberg K, Iwasaki M (1964) Acta Crystallogr 17:529

  18. 18.

    Hinchley SL, Robertson HE, Borisenko KB, Turner AR, Johnston BF, Rankin DWH, Ahmadian M, Jones JN, Cowley AH (2004) Dalton Trans 2469

  19. 19.

    Blake AJ, Brain PT, McNab H, Miller J, Morrison CA, Parson S, Rankin DWH, Robertson HE, Smart BA (1996) J Phys Chem 100:12280

  20. 20.

    Brain PT, Morrison CA, Parson S, Rankin DWH (1996) J Chem Phys Soc, Dalton Trans 4589

  21. 21.

    Gaussian 03, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA, Gaussian, Inc., Wallingford CT, 2004

  22. 22.

    Gaussian 09, Revision A.02 and B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ, Gaussian, Inc., Wallingford CT, 2010

  23. 23.

    Van Hemelrijk D, Van den Enden L, Geise HJ, Sellers HL, Schäfer L (1980) J Am Chem Soc 102:2189

  24. 24.

    Schäfer L, Ewbank JD, Siam K, Chiu N, Sellers HL (1988) In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction, part A. VCH Publishers Inc., New York, p 301

  25. 25.

    Klimkowski VJ, Ewbank JD, Van Alsenoy C, Scardale JN, Schäfer L (1982) J Am Chem Soc 104:1476

  26. 26.

    Moran D, Simmonett AC, Leach FE III, Allen WD, Schleyer PvR, Schaefer HF III (2006) J Am Chem Soc 128:9342

  27. 27.

    Sipachev VA (1985) J Mol Struct (Theochem) 121:143

  28. 28.

    Sipachev VA (2000) Struct Chem 11:167

  29. 29.

    Sipachev VA (2001) J Mol Struct 567–568:67

  30. 30.

    User’s Guide to program SHRINK v5.0 (2002) Handbook material by V. P. Novikov (vpnovikov@phys.chem.msu.ru)

  31. 31.

    Popik MV, Novikov VP, Vilkov LV, Samdal S, Tafipolsky MA (1996) J Mol Struct 376:173

  32. 32.

    Lide DR (ed) (2009–2010) Handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton, pp 9–49

  33. 33.

    Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90:5622

Download references

Acknowledgments

We are grateful to Professor Kenneth W. Hedberg for use of the Oregon State University gas electron diffraction apparatus and to Dr. Alan D. Richardson for technical assistance and expertise while recording the experimental data on 2-fluorobenzoyl chloride and 2-bromobenzoyl chloride. We also thank Ms. Snefrid Gundersen and the late Mr. Hans V. Volden at the University of Oslo for recording the original gas electron diffraction data on 2-chlorobenzoyl chloride. We acknowledge the support by the University of Edinburgh and Professor David W. H. Rankin in using the ed@ed v.3.0 data refinement suite. This work has received support from the U. S. National Science Foundation under Grant CHE95-23581 (K. W. Hedberg) and The Research Council of Norway NFR (Program for Supercomputing NOTUR) through account NN9129 K giving access to computing time on the HP Xeon 2.66 GHz high performance computer STALLO at the University of Tromsø (T. H. Johansen).

Author information

Correspondence to Tore H. Johansen.

Additional information

Dedicated to Professor Aldo Domenicano on the occasion of his 75th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 137 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johansen, T.H., Dahl, P.I. & Hagen, K. Molecular conformational structures of 2-fluorobenzoyl chloride, 2-chlorobenzoyl chloride, and 2-bromobenzoyl chloride by gas electron diffraction and normal coordinate analysis aided by quantum chemical calculations. Struct Chem 24, 789–805 (2013). https://doi.org/10.1007/s11224-012-0169-x

Download citation

Keywords

  • 2-Halobenzoyl chloride
  • Gas electron diffraction
  • MP2 force field calculations
  • Normal coordinate analysis
  • Gas-phase conformational composition