Advertisement

Structural Chemistry

, Volume 24, Issue 4, pp 1185–1192 | Cite as

A DFT study on structure, stability, and optical property of fullerenols

  • Xiao-Jun Li
  • Xiao-Hui Yang
  • Li-Mei Song
  • Hong-Jiang Ren
  • Tian-Zun Tao
Original Research

Abstract

The impact of hydroxyl group adsorption on fullerene surface (namely fullerenol) has been systematically investigated in this study using the hybrid density-functional theory calculations. We find that the relative stability of fullerenol clearly depends on the distribution of hydroxyl group on the surface. The eight hydroxyl groups in C20(OH)8 structure show preference to accumulate on two adjoining five-numbered rings. Analysis of reaction energy indicates that the formation of fullerenol from the C20 fullerene and hydroxyl group is energetically favorable. The highly hydroxylated fullerene is found to have high kinetic stability and low chemical reactivity, which is mostly associated with its electron distribution of HOMO and LUMO orbitals. In addition, the electronic structure of the most stable fullerenols has been analyzed by means of the total and partial density of states.

Keywords

Fullerenol Structure Stability Optical property Density-functional theory (DFT) 

References

  1. 1.
    Kroto HW, Heath JR, OflBrien SC, Curl RF, Smalley RE (1985) Nature 318:162–163CrossRefGoogle Scholar
  2. 2.
    Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Nano Lett 7:614–619CrossRefGoogle Scholar
  3. 3.
    Mateo-Alonso A, Iliopoulos K, Couris S, Prato M (2008) J Am Chem Soc 130:1534–1535CrossRefGoogle Scholar
  4. 4.
    Nagase S, Kobayashi T, Akasaka T, Wakahara T (2000) Fullerenes: chemistry, physics and technology, Chapt 9. In: Nagase S et al. (ed) Endohedral metallofullerenes: theory, electrochemistry, and chemical reactions. Wiley, New York, pp. 395–429Google Scholar
  5. 5.
    Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon clusters. Kluwer Academic Publisher, DordrechtGoogle Scholar
  6. 6.
    Baowan D, Cox BJ, Hill JM (2012) J Mol Model 18:549–557CrossRefGoogle Scholar
  7. 7.
    Iohara D, Hirayama F, Higashi K, Yamamoto K, Uekama K (2011) Mol Pharm 8:1276–1284CrossRefGoogle Scholar
  8. 8.
    Xu A, Chai Y, Nohmi T, Hei TK (2009) Part Fibre Toxicol 6:3–13CrossRefGoogle Scholar
  9. 9.
    Bal R, Türk G, Tuzcu M, Yilmaz O, Ozercan I, Kuloglu T, Gür S, Nedzvetsky VS, Tykhomyrov AA, Andrievskyg GV, Baydas G, Naziroglu M (2011) Toxicology 282:69–81CrossRefGoogle Scholar
  10. 10.
    Bosi S, Ros TD, Spalluto G, Prato M (2003) Eur J Med Chem 38:913–923CrossRefGoogle Scholar
  11. 11.
    Sofou P, Elemes Y, Panou-Pomonis E, Stavrakoudis A, Tsikaris V, Sakarellos C, Sakarellos-Daitsiotis M, Maggini M, Formaggiob F, Toniolo C (2004) Tetrahedron 60:2823–2828CrossRefGoogle Scholar
  12. 12.
    Chen Z, Ma K, Wang G, Zhao X, Tang A (2000) Comp Theor Chem 498:227–232Google Scholar
  13. 13.
    Jacevic V, Djordjevic-Milic V, Dragojevic-Simic V, Radic N, Govedarica B, Dobric S, Srdjenovic B, Injac R, Djordjevic A, Vasovic V (2007) Toxicol Lett 172:S146Google Scholar
  14. 14.
    Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Environ Sci Technol 41:6627–6632CrossRefGoogle Scholar
  15. 15.
    Guirado-López RA, Rincón ME (2006) J Chem Phys 125:154310–154312CrossRefGoogle Scholar
  16. 16.
    Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Fehér T, Forró L (2006) Adv Funct Mater 16:120–128CrossRefGoogle Scholar
  17. 17.
    Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V (2006) Toxicol Sci 91:173–183CrossRefGoogle Scholar
  18. 18.
    Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) Nano Lett 4:1881–1887CrossRefGoogle Scholar
  19. 19.
    Srdjenovic B, Milic-Torres V, Grujic N, Stankov K, Djordjevic A, Vasovic V (2010) Toxicol Mech Method 20:298–305CrossRefGoogle Scholar
  20. 20.
    Bogdanovića G, Kojića V, Đorđevićb A, Čanadanović-Brunetc J, Vojinović-Miloradovb M, Baltić VV (2004) Toxicol In Vitro 18:629–637CrossRefGoogle Scholar
  21. 21.
    Lu L-H, Lee Y-T, Chen H-W, Chiang LY, Huang H-C (1998) Br J Pharmacol 123:1097–1102CrossRefGoogle Scholar
  22. 22.
    Kojić V, Jakimov D, Bogdanović G, Djordjević A (2005) Mater Sci Forum 494:543–548CrossRefGoogle Scholar
  23. 23.
    Xu J-Y, Li Q-N, Li J-G, Ran T-C, Wu S-W, Song W-M, Chen S-L, Li W-X (2007) Carbon 45:1865–1870CrossRefGoogle Scholar
  24. 24.
    Xu J-Y, Han K, Li S-X, Cheng J-S, Xu G-T, Li W-X, Li Q-N (2009) J Appl Toxicol 29:578–584CrossRefGoogle Scholar
  25. 25.
    Fileti EE, Rivelino R, Mota FdB, Malaspina T (2008) Nanotechnology 19:365703–365707CrossRefGoogle Scholar
  26. 26.
    Zhang G, Liu Y, Liang D, Gan L, Li Y (2010) Angew Chem Int Ed 49:5293–5295CrossRefGoogle Scholar
  27. 27.
    Cohen AJ, Mori-Sanchez P, Yang W (2012) Chem Rev 112:289–320CrossRefGoogle Scholar
  28. 28.
    Sabirov DS, Tukhbatullina AA, Bulgakov RG (2012) Comp Theor Chem 993:113–117CrossRefGoogle Scholar
  29. 29.
    He H, Zheng L, Jin P, Yang M (2011) Comp Theor Chem 974:16–20CrossRefGoogle Scholar
  30. 30.
    Li X-J, Zhong Z-J, Wu H-Z (2011) J Mol Model 17:2623–2630CrossRefGoogle Scholar
  31. 31.
    Fileti EE, Rivelino R (2009) Chem Phys Lett 467:339–343CrossRefGoogle Scholar
  32. 32.
    Rodríguez-Zavala JG, Guirado-López RA (2006) J Phys Chem A 110:9459–9468CrossRefGoogle Scholar
  33. 33.
    Wang B-C, Wang H-W, Tso H-C, Chen T-L, Chou Y-M (2002) J Mol Struct (Theochem) 581:177–186CrossRefGoogle Scholar
  34. 34.
    Rodríguez-Zavalaa JG, Tenorioa FJ, Samaniegoa C, Méndez-Barrientosa CI, Peña-Leconaa FG, Muñoz-Maciela J, Flores-Morenob R (2011) Mol Phys 109:1771–1783CrossRefGoogle Scholar
  35. 35.
    Prinzbach H, Weiler A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff Bv (2000) Nature 407:60–63CrossRefGoogle Scholar
  36. 36.
    Scuseria GE (1996) Science 271:942–945CrossRefGoogle Scholar
  37. 37.
    Ashrafi AR (2005) Chem Phys Lett 406:75–80CrossRefGoogle Scholar
  38. 38.
    Devos A, Lannoo M (1998) Phys Rev B 58:8236–8239CrossRefGoogle Scholar
  39. 39.
    Miyamoto Y, Saito M (2001) Phys Rev B 63:161401–161404CrossRefGoogle Scholar
  40. 40.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  42. 42.
    Lu J, Re S, Choe Y-K, Nagase S, Zhou Y, Han R, Peng L, Zhang X, Zhao X (2003) Phys Rev B 67:125415–125417CrossRefGoogle Scholar
  43. 43.
    Leszczynski J, Yanov I (1999) J Phys Chem A 103:396–401CrossRefGoogle Scholar
  44. 44.
    Takahashi T, Suzuki S, Morikawa T, Katayama-Yoshida H, Hasegawa S, Inokuchi H, Seki K, Kikuchi K, Suzuki S, Ikemoto K, Achiba Y (1992) Phys Rev Lett 68:1232–1235CrossRefGoogle Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 02. Gaussian, Inc., WallingfordGoogle Scholar
  46. 46.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839–845CrossRefGoogle Scholar
  47. 47.
    Zhang C, Sun W, Cao Z (2007) J Chem Phys 126:144306–144307CrossRefGoogle Scholar
  48. 48.
    Xing G, Zhang J, Zhao Y, Tang J, Zhang B, Gao X, Yuan H, Qu L, Cao W, Chai Z, Ibrahim K, Su R (2004) J Phys Chem B 108:11473–11479CrossRefGoogle Scholar
  49. 49.
    Mulliken RS (1955) J Chem Phys 23:1833–1838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Natural and Applied SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringXi’an University of Arts and ScienceXi’anPeople’s Republic of China

Personalised recommendations