Structural Chemistry

, Volume 24, Issue 2, pp 543–548 | Cite as

HOMA parameters for the boron–boron bond: How the introduction of a BB bond influences the aromaticity of selected hydrocarbons

  • Krzysztof K. Zborowski
  • Ibon Alkorta
  • Jose Elguero
  • Leonard M. Proniewicz
Original Research

Abstract

An extension of the harmonic oscillator model of aromaticity (HOMA) model for systems with boron–boron bonds is presented. For the first time, the parameters of the HOMA model are estimated using only theoretically calculated bond lengths. The HOMA parameters obtained make geometric aromaticity studies possible for a large number of compounds containing the boron–boron bond. The derived HOMA parameters have been used to investigate how the introduction of the boron–boron moiety in the structure of selected hydrocarbons modifies their aromaticity. The conclusion is that the insertion of a boron–boron bond usually strongly decreases the aromaticity of the boron-containing compounds in comparison to their parent hydrocarbons.

Keywords

Aromaticity HOMA model Boron compounds 

References

  1. 1.
    Schleyer PvR, Jiao H (1996) Pure Appl Chem 68:209–218CrossRefGoogle Scholar
  2. 2.
    Krygowski TM, Cyrański MK, Czarnocki Z, Häfelinger G, Katritzky AR (2000) Tetrahedron 56:1783–1796CrossRefGoogle Scholar
  3. 3.
    Poater J, Durán M, Solà M, Silvi B (2005) Chem Rev 105:3911–3947CrossRefGoogle Scholar
  4. 4.
    Krygowski TM, Cyrański MK (2001) Chem Rev 101:1385–1419CrossRefGoogle Scholar
  5. 5.
    Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842CrossRefGoogle Scholar
  6. 6.
    Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78CrossRefGoogle Scholar
  7. 7.
    Li X-W, Xie Y, Schreiner PR, Gripper KD, Crittendon RC, Campana CF, Schaefer HF, Robinson GH (1996) Organometallics 15:3798–3803CrossRefGoogle Scholar
  8. 8.
    PvR Schleyer, Jiao H, van Eikema Hommes NJR, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669–12670CrossRefGoogle Scholar
  9. 9.
    Boldyrev AI, Wang L-S (2005) Chem Rev 105:3716–3757CrossRefGoogle Scholar
  10. 10.
    Jiménez-Halla JOC, Matito E, Robles J, Solà M (2006) Organomet Chem 691:4359–4366CrossRefGoogle Scholar
  11. 11.
    Krogh-Jespersen K, Cremer D, Dill JD, Pople JA, Schleyer PvR (1981) J Am Chem Soc 103:2564–2589CrossRefGoogle Scholar
  12. 12.
    King RB (2001) Chem Rev 101:1119–1152CrossRefGoogle Scholar
  13. 13.
    Chen Z, King RB (2005) Chem Rev 105:3613–3642CrossRefGoogle Scholar
  14. 14.
    Aihara J, Kanno H, Ishida T (2005) J Am Chem Soc 127:13324–13330CrossRefGoogle Scholar
  15. 15.
    Kiran B, Kumar GG, Nguyen MT, Kandalam AK, Jena P (2009) Inorg Chem 48:9965–9967CrossRefGoogle Scholar
  16. 16.
    Yu HL, Sang RL, Wu YY (2009) J Phys Chem A 113:3382–3386CrossRefGoogle Scholar
  17. 17.
    Madura ID, Krygowski TM, Cyranski MK (1998) Tetrahedron 54:14913–14918CrossRefGoogle Scholar
  18. 18.
    Zborowski KK, Alkorta I, Elguero J, Proniewicz LM (2012) Struct Chem 23:595–600CrossRefGoogle Scholar
  19. 19.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  20. 20.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:137–1358CrossRefGoogle Scholar
  21. 21.
    Becke AD (1993) J Chem Phys 98:5648–5653CrossRefGoogle Scholar
  22. 22.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., WallingfordGoogle Scholar
  24. 24.
    Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713–1722CrossRefGoogle Scholar
  25. 25.
    Krygowski TM, Cyranski MK (1996) Tetrahedron 52:10255–10264CrossRefGoogle Scholar
  26. 26.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842–3888CrossRefGoogle Scholar
  27. 27.
    Schleyer PvR, Marker C, Dransfeld A, Jiao H, Hommes NJRV (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  28. 28.
    Schleyer PvR, Monohar M, Wang Z, Kiran B, Jiao H, Puchta R, Hommes NJRV (2001) Org Lett 3:2465–2468CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Krzysztof K. Zborowski
    • 1
  • Ibon Alkorta
    • 2
  • Jose Elguero
    • 2
  • Leonard M. Proniewicz
    • 1
    • 3
  1. 1.Faculty of Chemistry, Jagiellonian UniversityKrakówPoland
  2. 2.Instituto de Química Médica (C.S.I.C.)MadridSpain
  3. 3.The State Higher Vocational SchoolTarnówPoland

Personalised recommendations