Structural Chemistry

, Volume 24, Issue 2, pp 491–497 | Cite as

Ab initio study of water clustering in the presence of a methyl radical

Original Research

Abstract

The geometrical structure and binding energy of small clusters of methyl radical and water molecules (up to five water molecules) in gas phase and water media have been investigated at the MP2 level of theory using 6-311++G(2df,2p) basis set. The complexes characterized contain OH···O, CH···O, and OH···C attractive interactions with stabilization energies in the range 6–143 kJ mol−1. The solvent has an enhancing influence on the stabilities of studied clusters. The atoms in molecules theory were also applied to explain the nature of the complexes. The interaction energies have been partitioned with the natural energy decomposition analysis showing that the most important attractive term corresponds to the charge transfer one.

Keywords

Single-electron hydrogen bonds CH···O hydrogen bonds UMP2 calculations Cooperativity effects Solvent effects 

Supplementary material

11224_2012_99_MOESM1_ESM.doc (56 kb)
Optimized geometry of the studied complexes at the UMP2/6-311++G(2df,2p) computational level. (DOC 55 kb)

References

  1. 1.
    Muller-Dethlefs K, Hobza P (2000) Chem Rev 100:143CrossRefGoogle Scholar
  2. 2.
    Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, Oxford and references thereinGoogle Scholar
  3. 3.
    Hobza P, Havlas Z (2000) Chem Rev 100:4253CrossRefGoogle Scholar
  4. 4.
    Solimannejad M, Azimi G, Lj Pejov (2004) Chem Phys Lett 400:185CrossRefGoogle Scholar
  5. 5.
    Solimannejad M, Azimi G, Pejov Lj (2004) Chem Phys Lett 391:201CrossRefGoogle Scholar
  6. 6.
    Solimannejad M, Alikhani ME (2005) Chem Phys Lett 406:351CrossRefGoogle Scholar
  7. 7.
    Solimannejad M, Alkorta I (2006) J Phys Chem A 110:10817CrossRefGoogle Scholar
  8. 8.
    Solimannejad M, Scheiner S (2006) Chem Phys Lett 429:38CrossRefGoogle Scholar
  9. 9.
    Solimannejad M, Scheiner S (2006) J Phys Chem A 110:5948CrossRefGoogle Scholar
  10. 10.
    Solimannejad M, Shirazi SG, Scheiner S (2007) J Phys Chem A 111:10717CrossRefGoogle Scholar
  11. 11.
    Solimannejad M, Nielsen CJ, Scheiner S (2008) Chem Phys Lett 466:136CrossRefGoogle Scholar
  12. 12.
    Solimannejad M, Massahi S, Scheiner S (2009) J Mol Struct (THEOCHEM) 913:50CrossRefGoogle Scholar
  13. 13.
    Solimannejad M, Scheiner S (2009) Mol Phys 107:713CrossRefGoogle Scholar
  14. 14.
    Johnson ER, Dilabio GA (2009) Interdiscip Sci 1:133CrossRefGoogle Scholar
  15. 15.
    Hammerum S (2009) J Am Chem Soc 131:8627CrossRefGoogle Scholar
  16. 16.
    Franchi P, Lucarini M, Pedrielli P, Pedulli GF (2002) Chem Phys Chem 3:789CrossRefGoogle Scholar
  17. 17.
    Alkorta I, Rozas J, Elguero J (1998) J Phys Chem 102:429CrossRefGoogle Scholar
  18. 18.
    Wang B, Li Z, Wu D, Hao X, Li R, Sun C (2003) Chem Phys Lett 375:91CrossRefGoogle Scholar
  19. 19.
    Tang K, Shi FQ (2007) Int J Quantum Chem 107:665CrossRefGoogle Scholar
  20. 20.
    An X, Liu H, Li Q, Gong B, Cheng J (2008) J Phys Chem A 112:5258CrossRefGoogle Scholar
  21. 21.
    Li Q, Zhu H, An X, Gong B (2009) Int J Quantum Chem 109:605CrossRefGoogle Scholar
  22. 22.
    Romieu A, Bellon S, Gasparutto D (2000) Org Lett 2:1085CrossRefGoogle Scholar
  23. 23.
    Alkorta I, Elguero J (2003) ARKIVOC xiv:31Google Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN03, Revision B.03. Gaussian, Inc, Pittsburgh, PAGoogle Scholar
  25. 25.
    Qi XJ, Liu L, Fu Y, Guo QX (2005) Struct Chem 16:347CrossRefGoogle Scholar
  26. 26.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  27. 27.
    Alkorta I, Trujillo C, Elguero J, Solimannejad M (2011) Comput Theor Chem 967:147CrossRefGoogle Scholar
  28. 28.
    Bader RFW (1990) In: Halpen J, Green MLH (eds) The international series of monographs of chemistry. Clarendon Press, OxfordGoogle Scholar
  29. 29.
    Biegler-Konig F, Schonbohm J (2002) AIM2000 Program Package, Ver. 2.0. University of Applied Sciences, BielefeldGoogle Scholar
  30. 30.
    Glendening ED (2011) J Am Chem Soc 118:2473CrossRefGoogle Scholar
  31. 31.
    Glendening ED (2005) J Phys Chem A 109:11936CrossRefGoogle Scholar
  32. 32.
    Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor–acceptor perspective. Cambridge Press, CambridgeGoogle Scholar
  33. 33.
    Zhao Y, Truhlar DG (2006) J Chem Theory Comput 2:1009CrossRefGoogle Scholar
  34. 34.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JE, Morales CM, Weinhold F (2004) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, WIGoogle Scholar
  35. 35.
    Schmidt JW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  36. 36.
    Tomasi J, Mennucci B, Cammi R (1993) Chem Rev 105:2999CrossRefGoogle Scholar
  37. 37.
    Shields RM, Temelso B, Archer KA, Morrell TE, Shields GC (2010) J Phys Chem A 114:11725CrossRefGoogle Scholar
  38. 38.
    Ugalde JM, Alkorta I, Elguero J (2000) Angew Chem Int Ed 39:717CrossRefGoogle Scholar
  39. 39.
    Gregory JK, Clary DC (1996) J Phys Chem 100:18014CrossRefGoogle Scholar
  40. 40.
    Alkorta I, Blanco F, Deya PM, Elguero J, Estarellas C, Frontera A, Quinonero D (2010) Theor Chem Acc 126:1CrossRefGoogle Scholar
  41. 41.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154CrossRefGoogle Scholar
  42. 42.
    Mata I, Alkorta I, Molins E, Espinosa E (2010) Chem Eur J 16:2442CrossRefGoogle Scholar
  43. 43.
    Alkorta I, Zborowski K, Elguero J, Solimannejad M (2006) J Phys Chem A 110:10279CrossRefGoogle Scholar
  44. 44.
    Li QZ, Wang NN, Yu ZW (2007) J Mol Struct (THEOCHEM) 847:68CrossRefGoogle Scholar
  45. 45.
    Li QZ, An XL, Gong BA, Cheng JB (2007) J Phys Chem A 111:10166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Quantum Chemistry Group, Department of Chemistry, Faculty of SciencesArak UniversityArakIran
  2. 2.Instituto de Química Médica (IQM-CSIC)MadridSpain

Personalised recommendations