Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparative theoretical studies of substituted bridged bipyridines and their N-oxides

  • 209 Accesses

  • 5 Citations

Abstract

In this work, the experimental synthesized bipyridines azo-bis(2-pyridine),4,4′-dimethyl-3,3′-dinitro-2,2′-azobipyridine, and N,N′-bis(3-nitro-2-pyridinyl)-methane-diamine and a set of designed bipyridines that have similar frameworks but different linkages and substituents were studied theoretically at the B3LYP/6-31G* level of density functional theory. The gas-phase heats of formation were predicted based on the isodesmic reactions, and the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. The crystal densities have been computed from molecular packing and results show that incorporation of –N=N–, –N=N(O)–, –CH=N–, and –NH–NH– into bipyridines is more favorable than –CH=CH– and –NH–CH2–NH– for increasing the density. The predicted detonation velocities (D) and detonation pressures (P) indicate that –NH2, –NO2, and –NF2 can enhance the detonation performance, and –NO2 and –NF2 are more favorable. Introducing –N=N–, –N=N(O)–, and –NH–NH– bridge groups into bipyridines is also favorable for improving their detonation performance. The oxidation of pyridine N always but that of –N=N– bridge does not always improve the detonation properties. E4–O, the derivative with –N=N– bridge and two –NF2 substituent groups, has the largest D (9.90 km/s) and P (47.47 GPa). An analysis of the bond dissociation energies shows that all derivatives have good thermal stability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Ritter H, Licht HH (1995) J Heterocycl Chem 32:585

  2. 2.

    Hollins RA, Merwin LM, Nissan RA (1996) J Heterocycl Chem 33:895

  3. 3.

    Ritter H, Licht HH (1988) Propellant Explos Pyrotech 13:25

  4. 4.

    Cheng J, Yao QZ (2008) Org Chem 28:1943

  5. 5.

    Chavez DE, Hiskey MA, Gilardi RD (2000) Angew Chem 39:1971

  6. 6.

    Turker L, Atalar T (2006) J Hazard Mater 137:1333

  7. 7.

    Johnson MA, Truong TN (1999) J Phys Chem B 103:9392

  8. 8.

    Zeman S, Trcinski WA, Matyas R (2008) J Hazard Mater 154:192

  9. 9.

    Turker L (2009) Energy Mater 27:94

  10. 10.

    Turker L, Atalar T, Gumus S, amur YC (2009) J Hazard Mater 167:440

  11. 11.

    Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291

  12. 12.

    Li JS, Huang YG, Dong HS (2005) Energy Mater 23:133

  13. 13.

    He ZW, Zhou SQ, Ju XH, Liu ZL (2010) Struct Chem 21:651

  14. 14.

    Fan XW, Gu CG, Chen G, Ju XH (2010) Chin J Chem 28:2364

  15. 15.

    Turker L, Gumus S, Atalar T (2010) Energy Mater 28:139

  16. 16.

    Li JS, Huang YG, Dong HS, Yang GC (2003) Energy Mater 11:177

  17. 17.

    Li JS, Huang YG, Dong HS (2004) Energy Mater 12:576

  18. 18.

    Cheng J, Yao QZ (2008) Org Chem 28:1943

  19. 19.

    Bock H, Dienelt R, Schodel H, Van TTH (1998) Struct Chem 9:279

  20. 20.

    Kucharska E, Hanuza J, Waskowska A, Talik Z (2004) Chem Phys 306:71

  21. 21.

    Hanson AWC (1980) Struct Commun 9:1249

  22. 22.

    Liu H, Wang F, Wang GX, Gong XD (2012) J Mol Model 18:1325

  23. 23.

    Liu Y, Gong XD, Wang LJ, Wang GX, Xiao HM (2011) J Phys Chem A 115:1754

  24. 24.

    Wang GX, Shi CH, Gong XD, Xiao HM (2009) J Phys Chem A 113:1318

  25. 25.

    Zhang XW, Zhu WH, Xiao HM (2010) J Phys Chem A 114:603

  26. 26.

    Wang F, Du HC, Zhang JY, Gong XD (2011) J Phys Chem A 115:11852

  27. 27.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

  28. 28.

    Becke AD (1993) J Chem Phys 98:5648

  29. 29.

    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

  30. 30.

    Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

  31. 31.

    Xiao HM (2004) Structures and properties of energetic compounds. National Defence Industry Press, Beijing

  32. 32.

    Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062

  33. 33.

    Zhang J, Xiao HM (2002) J Chem Phys 116:10674

  34. 34.

    Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929

  35. 35.

    Wang GX, Gong XD, Xiao HM (2008) Chin J Chem 26:1357

  36. 36.

    Wang GX, Gong XD, Liu Y, Xiao HM (2010) Int J Quantum Chem 110:1691

  37. 37.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford

  38. 38.

    Gong XD, Xiao HM, Tian H (2002) Int J Quantum Chem 86:531

  39. 39.

    Liu H, Wang F, Wang GX, Gong XD (2012) J Comput Chem 33:1790

  40. 40.

    Selmi M, Fortunelli A (1995) J Mol Struct (Theochem) 337:25

  41. 41.

    Jursic BS (2000) J Mol Struct (Theochem) 499:137

  42. 42.

    Lide DR (2003–2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton

  43. 43.

    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

  44. 44.

    Rice BM, Pai SV, Hare J (1999) Combust Flame 118:445

  45. 45.

    Politzer P, Lane P, Murray JS (2011) Cent Eur J Energy Mater 8:39

  46. 46.

    Accelrys (2008) Materials studio 4.4. Accelrys, San Diego

  47. 47.

    Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897

  48. 48.

    Baur WH, Kassner D (1992) Acta Crystallogr B 48:356

  49. 49.

    Wilson AJC (1988) Acta Crystallogr A 44:715

  50. 50.

    Mighell AD, Himes VL, Rodgers J (1983) Acta Crystallogr A 39:737

  51. 51.

    Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

  52. 52.

    Zhang XH, Yun ZH (1989) Explosive chemistry. National Defence Industry Press, Beijing

  53. 53.

    Stewart JJP (1989) J Comput Chem 10:209

  54. 54.

    Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York

Download references

Acknowledgments

The authors thank to the financial support of the National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF Grant No. 11076017).

Author information

Correspondence to Xue-Dong Gong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, H., Gong, X. Comparative theoretical studies of substituted bridged bipyridines and their N-oxides. Struct Chem 24, 471–480 (2013). https://doi.org/10.1007/s11224-012-0096-x

Download citation

Keywords

  • Bridged bipyridine
  • Density functional theory
  • Density
  • Detonation properties
  • Stability