Advertisement

Structural Chemistry

, Volume 24, Issue 1, pp 181–189 | Cite as

Reversible crystal-to-crystal phase transition of a 4,4′-bipyridine-linked dinuclear copper(II) complex

  • Rüdiger W. Seidel
  • Richard Goddard
  • Jürgen Breidung
  • Peter Bamfaste
  • Dirk Neff
  • Iris M. Oppel
Original Research

Abstract

The crystal-to-crystal phase transition of the previously reported dinuclear C i-symmetric complex [{Cu(NO3)2(phen)}2(4,4′-bipy)] (1) (phen = 1,10-phenanthroline; 4,4′-bipy = 4,4′-bipyridine) [Seidel et al. (2011) Z Anorg 637:1545–1554, 10] was studied in detail by differential scanning calorimetry (DSC), powder X-ray diffraction and variable temperature determinations of the unit cell parameters on a single-crystal. A density functional theory (DFT) study was undertaken to elucidate effects of crystal packing on the molecular structure in the solid-state. The DFT study confirmed that the molecular structures of 1 found in the solid-state do not represent the minimum energy conformation of the free molecule, especially with respect to the twist of the 4,4′-bipy bridging ligand. The DSC analysis revealed that the phase transition is a fully reversible process, and suggests that the relationship between the dimorphic forms of 1 is enantiotropic.

Keywords

Polymorphism Coordination compound Crystal structure Differential scanning calorimetry Density functional theory 

Notes

Acknowledgments

The authors would like to thank Ulrich Holle for performing the PXRD analysis. Professors Christian W. Lehmann and Klaus-Richard Pörschke are gratefully acknowledged for their support.

Supplementary material

11224_2012_44_MOESM1_ESM.txt (5 kb)
Supplementary material 1 (TXT 4 kb)
11224_2012_44_MOESM2_ESM.txt (5 kb)
Supplementary material 2 (TXT 4 kb)
11224_2012_44_MOESM3_ESM.txt (5 kb)
Supplementary material 3 (TXT 4 kb)

References

  1. 1.
    Biradha K, Sarkar M, Rajput L (2006) Chem Commun 4169–4179Google Scholar
  2. 2.
    Zangrando E, Casanova M, Alessio E (2008) Chem Rev 108:4979–5013CrossRefGoogle Scholar
  3. 3.
    Würthner F, You C-C, Saha-Möller CR (2004) Chem Soc Rev 33:133–146CrossRefGoogle Scholar
  4. 4.
    Sawada T, Yoshizawa M, Sato S, Fujita M (2009) Nat Chem 1:53–56CrossRefGoogle Scholar
  5. 5.
    Holliday BJ, Mirkin CA (2001) Angew Chem Int Ed 40:2022–2043CrossRefGoogle Scholar
  6. 6.
    Wang Y, Englert U (2007) Eur J Inorg Chem 5623–5625Google Scholar
  7. 7.
    Seidel RW, Oppel IM (2009) Acta Cryst C65:m235–m237Google Scholar
  8. 8.
    Dietz C, Seidel RW, Oppel IM (2009) Z Kristallogr New Cryst Struct 224:509–511Google Scholar
  9. 9.
    Seidel RW, Dietz C, Oppel IM (2011) Z Anorg Allg Chem 637:94–101CrossRefGoogle Scholar
  10. 10.
    Seidel RW, Goddard R, Hoch C, Oppel IM (2011) Z Anorg Allg Chem 637:1545–1554CrossRefGoogle Scholar
  11. 11.
    Du Z-X, Li J-X (2007) Acta Cryst E63:m2282Google Scholar
  12. 12.
    Bernstein J (2002) Polymorphism in molecular crystals. Clarendon, OxfordGoogle Scholar
  13. 13.
    Dunitz JD, Bernstein J (1995) Acc Chem Res 28:193–200CrossRefGoogle Scholar
  14. 14.
    Brandenburg K (2009) Diamond 32g. Crystal Impact GbR, BonnGoogle Scholar
  15. 15.
    SYBYL 8.1, Tripos International, St LouisGoogle Scholar
  16. 16.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453–457CrossRefGoogle Scholar
  17. 17.
    Groom CR, Allen FH (2011) WIREs Comput Mol Sci 1:368–376CrossRefGoogle Scholar
  18. 18.
    Kitajgorodskij A (1973) Molecular crystals and molecules. Academic Press, LondonGoogle Scholar
  19. 19.
    Spek AL (2009) Acta Cryst D65:148–155Google Scholar
  20. 20.
    STARe Version 9.30, Mettler-Toledo AG, SchwerzenbachGoogle Scholar
  21. 21.
    WinXPow, STOE & Cie GmbH, DarmstadtGoogle Scholar
  22. 22.
    PROTEUM2 Version 2.20, Bruker AXS Inc, MadisonGoogle Scholar
  23. 23.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  24. 24.
    Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789Google Scholar
  25. 25.
    Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244CrossRefGoogle Scholar
  26. 26.
    Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283–296CrossRefGoogle Scholar
  27. 27.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728CrossRefGoogle Scholar
  28. 28.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  29. 29.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  30. 30.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck,AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision e.01, Gaussian Inc, WallingfordGoogle Scholar
  32. 32.
    Feller D (1996) J Comput Chem 17:1571–1586Google Scholar
  33. 33.
    Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052CrossRefGoogle Scholar
  34. 34.
    Candan MM, Eroğlu S, Özbey S, Kendi E, Kantarci Z (1999) Spectrosc Lett 32:35–45CrossRefGoogle Scholar
  35. 35.
    Addison CC, Logan N, Wallwork SC, Garner CD (1971) Q Rev Chem Soc 25:289–322CrossRefGoogle Scholar
  36. 36.
    Steiner T, Desiraju GR (1998) Chem Commun 891–892Google Scholar
  37. 37.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordGoogle Scholar
  38. 38.
    Desiraju GR (2002) Acc Chem Res 35:565–573CrossRefGoogle Scholar
  39. 39.
    Steiner T (2002) Angew Chem Int Ed 41:48–76CrossRefGoogle Scholar
  40. 40.
    Desiraju GR (2005) Chem Commun 2995–3001Google Scholar
  41. 41.
    Desiraju GR (2011) Cryst Growth Des 11:896–898CrossRefGoogle Scholar
  42. 42.
    Desiraju GR (2011) Angew Chem Int Ed 50:52–59CrossRefGoogle Scholar
  43. 43.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555–1573CrossRefGoogle Scholar
  44. 44.
    Burger A, Ramberger R (1979) Mikrochim Acta 72:259–271CrossRefGoogle Scholar
  45. 45.
    Ostwald W (1897) Z Phys Chem 22:289–330Google Scholar
  46. 46.
    Pérez-Jiménez AJ, Sancho-García JC, Pérez-Jordá JM (2005) J Chem Phys 123:134309CrossRefGoogle Scholar
  47. 47.
    Wood PA, Allen FH, Pidcock E (2009) CrystEngComm 11:1563–1571CrossRefGoogle Scholar
  48. 48.
    Hahn Th (ed) (2002) International tables for crystallography, vol A, 5th edn. Kluwer, DordrechtGoogle Scholar
  49. 49.
    Veljković DŽ, Janjić GV, Zarić SD (2011) CrystEngComm 13:5005–5010CrossRefGoogle Scholar
  50. 50.
    Etter MC (1990) Acc Chem Res 23:120–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rüdiger W. Seidel
    • 1
  • Richard Goddard
    • 2
  • Jürgen Breidung
    • 2
  • Peter Bamfaste
    • 3
  • Dirk Neff
    • 3
  • Iris M. Oppel
    • 4
  1. 1.Lehrstuhl für Analytische ChemieRuhr-Universität BochumBochumGermany
  2. 2.Max-Planck-Institut für KohlenforschungMülheimGermany
  3. 3.Mettler-Toledo GmbHGiessenGermany
  4. 4.Institut für Anorganische ChemieRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations