Structural Chemistry

, Volume 23, Issue 4, pp 981–986 | Cite as

On diamond D5

Original Research

Abstract

Diamond D5 is a hyperdiamond structured as coalesced C20 and C28 small fullerenes, in the ratio 2:1, and having up to 90 % pentagonal rings while the others being hexagonal. Design of several precursors, intermediates, and crystal networks was performed using our original software programs CVNet and Nano-Studio. Energetic data, calculated at DFT and DFTB levels of theory revealed a stability of these structures close to that of classical diamond. A lonsdaleite-like structure is also discussed. The topology of these networks is described in terms of the net parameters and the net characteristics in crystallographic terms.

Keywords

Diamond D5 Lonsdaleite L5 Crystal network DFT DFTB Molecular topology 

References

  1. 1.
    Diudea MV (2010) Nanomolecules and nanostructures: polynomials and indices. Univ, KragujevacGoogle Scholar
  2. 2.
    Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  3. 3.
    Nagy CL, Diudea MV (2005) In: Diudea MV (ed) Nanostructures, novel architecture. NOVA, New YorkGoogle Scholar
  4. 4.
    Aleksenskiǐ AE, Baǐdakova MV, Vul AY, Davydov VY, Pevtsova YA (1997) Diamondgraphite phase transition in ultradisperse-diamond clusters. Phys Solid State 39:1007–1015CrossRefGoogle Scholar
  5. 5.
    Williams OA, Douhéret O, Daenen M, Haenen K, Osawa E, Takahashi M (2007) Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem Phys Lett 445:255–258CrossRefGoogle Scholar
  6. 6.
    Decarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 133:1821–1822CrossRefGoogle Scholar
  7. 7.
    Osawa E (2008) Monodisperse single nanodiamond particulates. Pure Appl Chem 80:1365–1379CrossRefGoogle Scholar
  8. 8.
    Osawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diam Relat Mater 16:2018–2022CrossRefGoogle Scholar
  9. 9.
    Dubrovinskaia N, Dub S, Dubrovinsky L (2006) Superior wear resistance of aggregated diamond nanorods. Nano Lett 6:824–826CrossRefGoogle Scholar
  10. 10.
    Lorenz HP (1995) Investigation of TiN as an interlayer for diamond deposition on steel. Diam Relat Mater 4:1088–1092CrossRefGoogle Scholar
  11. 11.
    Khachatryan AK, Aloyan SG, May PW, Sargsyan R, Khachatryan VA, Baghdasaryan VS (2008) Graphite-to-diamond transformation induced by ultrasound cavitation. Diam Relat Mater 17:931–936CrossRefGoogle Scholar
  12. 12.
    Tarasov D, Izotova E, Alisheva D, Akberova N, Freitas RA Jr (2011) Structural stability of clean, passivated, and partially dehydrogenated cuboid and octahedral nanodiamonds up to 2 nanometers in size. J Comput Theor Nanosci 8:147–167Google Scholar
  13. 13.
    Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281CrossRefGoogle Scholar
  14. 14.
    Frondel C, Marvin UB (1967) Lonsdaleite, a hexagonal polymorph of diamond. Nature 214:587–589CrossRefGoogle Scholar
  15. 15.
    Balaban AT, Ragé Schleyer PV (1978) Systematic classification and nomenclature of diamond hydrocarbons-I. Graph-theoretical enumeration of polymantanes. Tetrahedron 34:3599–3609CrossRefGoogle Scholar
  16. 16.
    He H, Sekine T, Kobayashi T (2002) Direct transformation of cubic diamond to hexagonal diamond. Appl Phys Lett 81:610–612CrossRefGoogle Scholar
  17. 17.
    Ivanovskii AL (2008) Hyperdiamonds. Russ J Inorg Chem 53:1274–1282CrossRefGoogle Scholar
  18. 18.
    Sunada T (2008) Crystals that nature might miss creating. Notices Am Math Soc 55:208–215Google Scholar
  19. 19.
    Diudea MV, Bende A, Janežič D (2010) Omega polynomial in diamond-like networks. Fuller Nanotub Carbon Nanostruct 18:236–243CrossRefGoogle Scholar
  20. 20.
    Hyde ST, O’Keeffe M, Proserpio DM (2008) A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew Chem Int Ed 47:7996–8000CrossRefGoogle Scholar
  21. 21.
    Diudea MV, Ilić A (2011) All-pentagonal face multi tori. J Comput Theor Nanosci 8:736–739CrossRefGoogle Scholar
  22. 22.
    Diudea MV (2004) Covering forms in nanostructures. Forma (Tokyo) 19:131–163Google Scholar
  23. 23.
    Diudea MV, Stefu M, John PE, Graovacc A (2006) Generalized operations on maps. Croat Chem Acta 79:355–362Google Scholar
  24. 24.
    Diudea MV (2005) Nanoporous carbon allotropes by septupling map operations. J Chem Inf Model 45:1002–1009CrossRefGoogle Scholar
  25. 25.
    Diudea MV, Petitjean M (2008) Symmetry in multi tori. Symmetry Cult Sci 19:285–305Google Scholar
  26. 26.
    Anurova NA, Blatov VA, Ilyushin GD, Proserpio DM (2010) Natural tilings for zeolite-type frameworks. J Phys Chem C 114:10160–10170CrossRefGoogle Scholar
  27. 27.
    Benedek G, Vahedi-Tafreshi H, Barborini E, Piseri P, Milani P, Ducati C, Robertson J (2003) The structure of negatively curved spongy carbon. Diam Relat Mater 12:768–773CrossRefGoogle Scholar
  28. 28.
    Barborini E, Piseri P, Milani P, Benedek G, Ducati C, Robertson J (2002) Negatively curved spongy carbon. Appl Phys Lett 81:3359–3361CrossRefGoogle Scholar
  29. 29.
    Diudea MV (2010) Diamond D5, a novel allotrope of carbon. Studia Univ Babes-Bolyai Chemia 55:11–17Google Scholar
  30. 30.
    Benedek G, Colombo L (1996) Hollow diamonds from fullerenes. Mater Sci Forum 232:247–274CrossRefGoogle Scholar
  31. 31.
    Delgado-Friedrichs O, O’Keeffe M (2006) On a simple tiling of Deza and Shtogrin. Acta Crystallogr A 62:228–229CrossRefGoogle Scholar
  32. 32.
    Aste T, Weaire D (2008) The pursuit of perfect packing. Taylor and Francis, BristolCrossRefGoogle Scholar
  33. 33.
    Delgado-Friedrichs O, O’Keeffe M (2010) Simple tilings by polyhedra with five- and sixsided faces. Acta Crystallogr A 66:637–639CrossRefGoogle Scholar
  34. 34.
    Sikirić MD, Delgado-Friedrichs O, Deza M (2010) Space fullerenes: a computer search for new Frank–Kasper structures. Acta Crystallogr A 66:602–615CrossRefGoogle Scholar
  35. 35.
    Blase X, Benedek G, Bernasconi M (2010) In: Colombo L, Fasolino A (eds) Computer-based modeling of novel carbon systems and their properties beyond nanotubes. Springer, New YorkGoogle Scholar
  36. 36.
    Pauling L, Marsh RE (1952) The structure of chlorine hydrate. Proc Natl Acad Sci USA 38:112–118CrossRefGoogle Scholar
  37. 37.
    Powell HM (1948) The structure of molecular compounds. Part IV. Clathrate compounds. J Chem Soc 1:61–72CrossRefGoogle Scholar
  38. 38.
    Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2006) Three-periodic nets and tilings: edge-transitive binodal structures. Acta Crystallogr A 62:350–355CrossRefGoogle Scholar
  39. 39.
    Adams GB, Okeeffe M, Demkov AA, Sankey OF, Huang YM (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49:8048–8053CrossRefGoogle Scholar
  40. 40.
    Prinzbach H, Wahl F, Weiler A, Landenberger P, Wörth J, Scott LT, Gelmont M, Olevano D, Sommer F, Von Issendorff B (2006) C20 carbon clusters: fullerene-boat-sheet generation, mass selection, photoelectron characterization. Chem Eur J 12:6268–6280CrossRefGoogle Scholar
  41. 41.
    Paquette LA, Balogh DW, Usha R, Kountz D, Christoph GG (1981) Crystal and molecular structure of a pentagonal dodecahedrane. Science 211:575–576CrossRefGoogle Scholar
  42. 42.
    Prinzbach H, Weller A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407:60–63CrossRefGoogle Scholar
  43. 43.
    Saito M, Miyamoto Y (2001) Theoretical identification of the smallest fullerene, C20. Phys Rev Lett 87:355031–355034CrossRefGoogle Scholar
  44. 44.
    Eaton PE (1979) Towards dodecahedrane. Tetrahedron 35:2189–2223CrossRefGoogle Scholar
  45. 45.
    Simmons Iii HE, Maggio JE (1981) Synthesis of the first topologically non-planar molecule. Tetrahedron Lett 22:287–290CrossRefGoogle Scholar
  46. 46.
    Paquette LA, Vazeux M (1981) Threefold transannular epoxide cyclization. Synthesis of a heterocyclic C17-hexaquinane. Tetrahedron Lett 22:291–294CrossRefGoogle Scholar
  47. 47.
    Gestmann D, Pritzkow H, Kuck D (1996) Partially benzoanellated centrohexaquinanes: oxidative degradation of centropolyindanes by using ruthenium(VIII) oxide and ozone. Liebigs Ann 9:1349–1359Google Scholar
  48. 48.
    Kuck D (2006) Three-dimensional hydrocarbon cores based on multiply fused cyclopentane and indane units: centropolyindanes. Chem Rev 106:4885–4925CrossRefGoogle Scholar
  49. 49.
    Stefu M, Diudea MV (2005) CageVersatile CVNet. Babes-Bolyai University, Cluj-NapocaGoogle Scholar
  50. 50.
    Nagy CL, Diudea MV (2010) Nano studio. Babes-Bolyai University, Cluj-NapocaGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, J. A. Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc., WallingfordGoogle Scholar
  52. 52.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268CrossRefGoogle Scholar
  53. 53.
    Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2000) DFT studies on helix formation in N-acetyl-(l-alanyl)(n)-N’-methylamide for n = 1−20. Chem Phys 256:15–27CrossRefGoogle Scholar
  54. 54.
    Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2001) Energetics and structure of glycine and alanine based model peptides: approximate SCC–DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chem Phys 263:203–219CrossRefGoogle Scholar
  55. 55.
    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density functional-theory based treatment. J Chem Phys 114:5149–5155CrossRefGoogle Scholar
  56. 56.
    DFTB+ 1.1 is a DFTB implementation, which is free for non-commercial use. For details, see: http://www.dftbplus.info
  57. 57.
    Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684CrossRefGoogle Scholar
  58. 58.
    Nesper R, Vogel K, Blöchl PE (1993) Hypothetical carbon modifications derived from zeolite frameworks. Angew Chem Int Ed 32:701–703CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mircea V. Diudea
    • 1
  • Csaba L. Nagy
    • 1
  • Attila Bende
    • 2
  1. 1.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Molecular and Biomolecular Physics DepartmentNational Institute for R&D of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations