Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical study on the hydrogen bonding interactions in 1:1 supermolecular complexes of noradrenaline with water

Abstract

The geometries, energies, and IR characteristics of 1:1 noradrenaline–water (NA–H2O) complexes are studied at the ωB97XD/6-311++G(d,p) level. Various type of hydrogen bonds (H-bonds) are formed in these NA–H2O complexes, and the quantum theory of the atoms in molecules and natural bond orbital analyses are used to understand the nature of hydrogen bonding interactions. The intramolecular H-bond formed between the hydroxyl group and the amino N atom in free NA molecule is replaced by two intermolecular H-bonds and results in the formation of the most stable NA–H2O complex. In addition, the intramolecular H-bond keeps untouched in other NA–H2O complexes, moreover, it is strengthened by the intermolecular H-bonds in some NA–H2O complexes due to the cooperativity, whereas no such cooperativity is found in the other NA–H2O complexes in which the intermolecular H-bonds are away from the side chain of NA. Our researches show that the hydrogen bonding interaction is not the unique factor for the relative stabilities of NA–H2O complexes, and the structural deformation plays an important role as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    van Mourik T (2005) Chem Phys Lett 414:364

  2. 2.

    Snoek LC, van Mourik T, Carcabal P, Simons JP (2003) Phys Chem Chem Phys 5:4519

  3. 3.

    Miller TF, Clary DC (2004) J Phys Chem B 108:2484

  4. 4.

    Song YZ (2007) Spectrosc Acta A 67:1169

  5. 5.

    Perati PR, Cheng J, Jandik P, Hanko VP (2010) Electroanalysis 22:325

  6. 6.

    Dong H, Wang SH, Liu AH, Galligan JJ, Swain GM (2009) J Electroanal Chem 632:20

  7. 7.

    Luczak T (2009) Electroanalysis 12:1539

  8. 8.

    Seol H, Jeong H, Jeon S (2009) J Solid State Electrochem 13:1881

  9. 9.

    Yao H, Li SG, Tang YH, Chen Y, Chen YZ, Lin XH (2009) Electrochim Acta 54:4607

  10. 10.

    Yu ZY, Liu T, Guo DJ, Liu YJ, Liu CB (2010) J Mol Struct 984:402

  11. 11.

    Snoek LC, Van Mourik T, Simons JP (2003) Mol Phys 101:1239

  12. 12.

    van Mourik T (2004) Phys Chem Chem Phys 6:2827

  13. 13.

    Alonso JL, Sanz ME, Lopez JC, Cortijo V (2009) J Am Chem Soc 131:4320

  14. 14.

    Macleod NA, Simons JP (2006) Mol Phys 104:3317

  15. 15.

    Huang ZG, Dai YM, Yu L, Wang HK (2011) J Mol Model 17:2609

  16. 16.

    Benoit DM (2008) J Chem Phys 129:234304

  17. 17.

    Miller TF, Clary DC (2006) J Phys Chem A 110:731

  18. 18.

    Van Mourik T, Fruchtl HA (2005) Mol Phys 103:1641

  19. 19.

    Alagona G, Ghio C (2002) Int J Quantum Chem 90:641

  20. 20.

    Huang ZG, Dai YM, Yu L (2010) Struct Chem 21:863

  21. 21.

    Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, London

  22. 22.

    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  23. 23.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

  24. 24.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

  25. 25.

    Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687

  26. 26.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian, Inc., Wallingford

  27. 27.

    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

  28. 28.

    McLean AD, Chandler GS (1980) J Chem Phys 72:5639

  29. 29.

    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

  30. 30.

    Rao L, Ke HW, Fu G, Xu X, Yan YJ (2009) J Chem Theory Comput 5:86

  31. 31.

    Huang ZG, Dai YM, Wang HK, Yu L (2011) J Mol Model 17:2781

  32. 32.

    Huang ZG, Yu L, Dai YM (2011) Int J Quantum Chem 111:3915

  33. 33.

    Huang ZG, Yu L, Dai YM, Wang HK (2011) Struct Chem 22:57

  34. 34.

    Boys SF, Bernardi F (1970) Mol Phys 19:553

  35. 35.

    Biegler-König F, Schönbohm J (2000) University of Applied Sciences, Bielefeld

  36. 36.

    Yu ZY, Guo DJ, Wang HQ (2004) Chin J Chem Phys 17:149

  37. 37.

    Millefiori S, Raudino A, Zuccarello F (1980) Z Phys Chem Neue Folge 123:67

  38. 38.

    Bondi A (1964) J Phys Chem 68:441

  39. 39.

    Galvez O, Gomez PC, Pacios LF (2003) J Chem Phys 118:4878

  40. 40.

    Miao R, Jin C, Yang GS, Hong J, Zhao CM, Zhu LG (2005) J Phys Chem A 109:2340

  41. 41.

    Nozad AG, Meftah S, Ghasemi MH, Kiyani RA, Aghazadeh M (2009) Biophys Chem 141:49

  42. 42.

    Parreira RLT, Valdes H, Galembeck SE (2006) Chem Phys 331:96

  43. 43.

    Zhou HW, Lai WP, Zhang ZQ, Li WK, Cheung HY (2009) J Comput Aided Mol Des 23:153

  44. 44.

    Koch U, Popelier PLA (1995) J Phys Chem 99:9747

  45. 45.

    Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

  46. 46.

    Pacios LF (2004) J Phys Chem A 108:1177

  47. 47.

    Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163

Download references

Acknowledgment

This study is supported by Tianjin Science and Technology Development Fund Projects in Colleges and Universities (No. 20080504).

Author information

Correspondence to Zhengguo Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Huang, Z., Shen, T. et al. Theoretical study on the hydrogen bonding interactions in 1:1 supermolecular complexes of noradrenaline with water. Struct Chem 23, 1163–1172 (2012). https://doi.org/10.1007/s11224-011-9940-7

Download citation

Keywords

  • Noradrenaline
  • Hydrogen bonding interaction
  • Quantum theory of the atoms in molecules (QTAIM)
  • Natural bond orbital (NBO)