Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Factors affecting relative stabilities and proton affinities of oxazolidinone and its N,C5-formyl derivatives

Abstract

The proton affinities of all the potential sites of oxazolidinone (OXA) and formyl substituted OXA have been evaluated using ab initio and DFT methods. N4- and C5-formyl oxazolidinone isomers and their protonated structures have been analyzed for relative stabilities. The proton affinity (PA) of carbonyl oxygen of oxazolidinone is observed to be highest in un-substituted and formyl substituted OXA molecules. The PA values decrease for the potential sites in the range 0.5–15.51 kcal/mol as a result of the presence of the formyl substituent. Atomic charges and electron delocalization of neutral and protonated species have been analyzed with the application of NBO. The various factors such as variation in geometrical parameters, atomic charge redistribution, alterations in conjugative interactions, effect of formyl substituent, the presence of intramolecular hydrogen bonding and electronic effects have been explored to rationalize the relative stabilities and proton affinities of OXA and its N,C5 formyl derivatives.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Kearney JA, Barbadora K, Mason EO, Wald ER, Green M (1999) Int J Antimicrob Agents 12:141

  2. 2.

    Kakeya H, Morishita M, Koshino H, Morita TI, Kobayashi K, Osada H (1999) J Org Chem 64:1052

  3. 3.

    Adams JB, Hockessin D, Geffken D, Rayner DR (1993) In: Fungicidal oxazolidinones. US Patent no. 5,223,523

  4. 4.

    Middleton WJ, Wilmington D (1972) In: 2,2,5,5-Tetrakis(Polyhalomethyl),4-Oxazolidinone Herbicides. US Patent no. 3,690,862

  5. 5.

    Fraunhoffer KJ, White MC (2007) J Am Chem Soc 129:7274

  6. 6.

    Morita T, Nagasawa Y, Yahiro S, Matsunaga H, Kunieda T (2001) Org Lett 3:897

  7. 7.

    Evans DA, Bartroli J, Shih TL (1981) J Am Chem Soc 103:2127

  8. 8.

    Farina V, Reeves JT, Senanayake CH, Song JJ (2006) Chem Rev 106:2734

  9. 9.

    Froehlich TE, Lanphear BP, Epstein JN, Barbaresi WJ, Katusic SK, Kahn RS (2007) Arch Pediatr Adolesc Med 161:857

  10. 10.

    Sarma KS, Sureshbabu VV, Venkataramanarao R, Hemantha HP, Narendra N (2007) In: Proceedings of the 4th international peptide symposium in conjunction with the 7th Australian peptide conference and the 2nd Asia-pacific international peptide symposium, Cairns

  11. 11.

    Website. http://www.chemicaldictionary.org/dic/S/S-4-Isopropyl-2-oxazolidinone_1595.htm

  12. 12.

    Website. http://www.chemicalbook.com/ProductMSDSDetailCB5721531_EN.htm

  13. 13.

    Bordwell FG (1988) Acc Chem Res 21:456

  14. 14.

    Berthelot M, Decouzon M, Gal J-F, Laurence C, Le Questel J-Y, Maria P-C, Tortajada J (1991) J Org Chem 56:4490

  15. 15.

    Szulejko JE, McMahon TB (1993) J Am Chem Soc 115:7839

  16. 16.

    Wieczorek R, Dannenberg JJ (2004) J Am Chem Soc 126:12278

  17. 17.

    Van Beelen SE, Koblenz TA, Ingemann S, Hammmerum S (2004) J Phys Chem A 108:2787

  18. 18.

    Dixon DA, Gole JL, Komornicki A (1988) J Phys Chem 92:2134

  19. 19.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng J, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogilaro F, Bearpark M, Heyd J, Brothers E, Kudin VN, Straoverov N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratman RE, Yazyev O, Austin JA, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski G, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) In: Gaussian Inc., Wallingford

  20. 20.

    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

  21. 21.

    Bartolorri LJ, Fluchick K (1995) In: Reviews in computational chemistry, vol 7, VCH, New York

  22. 22.

    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

  23. 23.

    Forseman JB, Frisch E (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gauusian Inc., Pittsburgh

  24. 24.

    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683

  25. 25.

    Wang Z, Chu K, Rodriquez CF, Hopkinson AC, Michael Siu KW (1999) J Phys Chem 103:8700

  26. 26.

    Bharatam PV, Iqbal P, Malde A, Tiwari R (2004) J Phys Chem A 108:10509

  27. 27.

    Reed AE, Weinstock RB, Weinhold FJ (1985) Chem Phys 83:735

  28. 28.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

  29. 29.

    Wouters J, Ooms F, Durant F (1997) Acta Cryst C53:895

Download references

Acknowledgment

The authors are highly thankful to UGC for financial assistance.

Author information

Correspondence to Damanjit Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1182 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaur, D., Sharma, R. Factors affecting relative stabilities and proton affinities of oxazolidinone and its N,C5-formyl derivatives. Struct Chem 23, 905–919 (2012). https://doi.org/10.1007/s11224-011-9938-1

Download citation

Keywords

  • Oxazolidinone
  • Proton affinity
  • Formyl
  • Substituent
  • Relative stability
  • NBO
  • Conjugative interactions