Advertisement

Structural Chemistry

, Volume 23, Issue 3, pp 847–856 | Cite as

A theoretical study of 1:1 and 1:2 complexes of acetylene with nitrosyl hydride

  • Mohammad Solimannejad
  • Masumeh Gharabaghi
  • Ibon Alkorta
  • Goar Sánchez-Sanz
Original Research

Abstract

Ab initio calculations at MP2 computational level using aug-cc-pVTZ basis set were used to analyze the interactions between 1:1 and 1:2 complexes of acetylene and nitrosyl hydride. The structures obtained have been analyzed with the atoms in molecules and the density functional theory–symmetry adapted perturbation theory methodologies. Four minima were located on the potential energy surface of the 1:1 complex. Twenty-four different structures have been obtained for the 1:2 complexes. Five types of interactions are observed, CH···O, CH···N, NH···π hydrogen bonds and orthogonal interactions between the π clouds of triple bond, or the lone pair of oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of the 1:1 and 1:2 clusters including basis set superposition error and ZPE are in the range 3–8 and 6–17 kJ mol−1 at MP2/aug-cc-pVTZ computational level, respectively. Blue shift of NH bond upon complex formation in the ranges between 18–30 and 20–96 cm−1 is predicted for 1:1 and 1:2 clusters, respectively. The total nonadditive energy in the 1:2 cluster, calculated as the sum of the supermolecular nonadditive MP2 energy and the three-body dispersion energy, presents values between −1.48 and 1.20 kJ mol−1.

Keywords

Cooperativity Hydrogen bonding HNO C2H2 

Supplementary material

11224_2011_9931_MOESM1_ESM.doc (108 kb)
Optimized geometries of the all complexes at the MP2/aug-cc-pVTZ computational level and AIM properties of intermolecular BCPs (a.u.) for the trimers (DOC 108 kb)

References

  1. 1.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Scheiner S (1997) Hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond: recent developments in theory and experiments. North-Holland Publishing Co, AmsterdamGoogle Scholar
  5. 5.
    Pinchas S (1963) J Phys Chem 67:1862CrossRefGoogle Scholar
  6. 6.
    Schneider WG, Bernstein HJ (1956) Trans Faraday Soc 52:13CrossRefGoogle Scholar
  7. 7.
    Trudeau G, Dumas J-M, Dupuis P, Guerin M, Sandorfy C (1980) Top Curr Chem 93:91CrossRefGoogle Scholar
  8. 8.
    Budesinsky M, Fiedler P, Arnold Z (1989) Synthesis 858Google Scholar
  9. 9.
    Scheiner S (2000) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 6. JAI Press, StamfordGoogle Scholar
  10. 10.
    Hobza P, Havlas Z (2002) Theor Chem Acc 108:325CrossRefGoogle Scholar
  11. 11.
    Scheiner S (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411CrossRefGoogle Scholar
  13. 13.
    Masunov A, Dannenberg JJ, Contreras RH (2001) J Phys Chem A 105:4737CrossRefGoogle Scholar
  14. 14.
    Hermansson K (2002) J Phys Chem A 106:4695CrossRefGoogle Scholar
  15. 15.
    Pejov L, Hermansson K (2003) J Chem Phys 119:313CrossRefGoogle Scholar
  16. 16.
    Qian W, Krimm S (2002) J Phys Chem A 106:6628CrossRefGoogle Scholar
  17. 17.
    Qian W, Krimm S (2002) J Phys Chem A 106:11663CrossRefGoogle Scholar
  18. 18.
    Delanoye SN, Herrebout WA, van der Veken BJ (2002) J Am Chem Soc 124:7490CrossRefGoogle Scholar
  19. 19.
    Delanoye SN, Herrebout WA, van der Veken BJ (2002) J Am Chem Soc 124:11854CrossRefGoogle Scholar
  20. 20.
    Li X, Liu L, Schlegel HB (2002) J Am Chem Soc 124:9639CrossRefGoogle Scholar
  21. 21.
    Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973CrossRefGoogle Scholar
  22. 22.
    Alabugin IV, Manoharan M, Weinhold FA (2004) J Phys Chem A 108:4720CrossRefGoogle Scholar
  23. 23.
    Karpfen A, Kryachko ES (2009) J Phys Chem A 113:5217CrossRefGoogle Scholar
  24. 24.
    Bunte SW, Rice BM, Chabalowski CF (1997) J Phys Chem A 101:9430CrossRefGoogle Scholar
  25. 25.
    Liu Y, Liu W, Yang Y, Liu J (2006) Int J Quantum Chem 106:2122CrossRefGoogle Scholar
  26. 26.
    Liu Y, Liu W, Li H, Liu J, Yang Y (2006) J Phys Chem A 110:11760CrossRefGoogle Scholar
  27. 27.
    Solimannejad M, Massahi S, Alkorta I (2009) Chem Phys 362:1CrossRefGoogle Scholar
  28. 28.
    Yang Y, Zhang W, Gao X (2005) Int J Quantum Chem 106:1199CrossRefGoogle Scholar
  29. 29.
    Liu Y, Liu W, Li H, Liu J, Yang Y, Cheng S (2006) Int J Quantum Chem 107:396CrossRefGoogle Scholar
  30. 30.
    Liu Y, Liu W-Q, Li HY, Yang Y, Cheng S (2007) Chin J Chem Phys 20:37CrossRefGoogle Scholar
  31. 31.
    Liu Y (2008) Int J Quantum Chem 108:1123CrossRefGoogle Scholar
  32. 32.
    Nguyen TT, Hue TT, Nguyen MT, Zeegers-Huyskens T (2008) Phys Chem Chem Phys 10:5105Google Scholar
  33. 33.
    Yang Y, Zhang W-J, Gao X-M (2006) Chin J Chem 24:887CrossRefGoogle Scholar
  34. 34.
    Trung NT, Hue TT, Nguyen MT (2009) J Phys Chem A 113:3245CrossRefGoogle Scholar
  35. 35.
    Solimannejad M, Scheiner S (2007) J Phys Chem A 111:4431CrossRefGoogle Scholar
  36. 36.
    Solimannejad M, Scheiner S (2008) J Phys Chem A 112:4120CrossRefGoogle Scholar
  37. 37.
    Solimannejad M, Alkorta I, Elguero J (2009) Chem Phys Lett 474:253CrossRefGoogle Scholar
  38. 38.
    Solimannejad M, Hasanvand Jamshidi F, Amani S (2010) THEOCHEM 958:116CrossRefGoogle Scholar
  39. 39.
    Solimannejad M, Nassirinia N, Amani S (2011) Struct Chem 22:865CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2003) Gaussian 03 Rev B02. Gaussian Inc, PittsburghGoogle Scholar
  41. 41.
    Dunning TH (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  42. 42.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  43. 43.
    Alkorta I, Trujillo C, Elguero J, Solimannejad M (2011) Comput Theor Chem 967:147CrossRefGoogle Scholar
  44. 44.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  45. 45.
    Keith TA (2008) AIMAll Version 08.11.29; aim.tkgristmill.com
  46. 46.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154CrossRefGoogle Scholar
  47. 47.
    Ziolkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514CrossRefGoogle Scholar
  48. 48.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887CrossRefGoogle Scholar
  49. 49.
    Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K (2005) J Chem Phys 123:214103CrossRefGoogle Scholar
  50. 50.
    Jansen G, Heßelmann A (2001) J Phys Chem A 105:646CrossRefGoogle Scholar
  51. 51.
    Heßelmann A, Jansen G (2002) Chem Phys Lett 357:464CrossRefGoogle Scholar
  52. 52.
    Heßelmann A, Jansen G (2002) Chem Phys Lett 362:319CrossRefGoogle Scholar
  53. 53.
    Heßelmann A, Jansen G (2003) Chem Phys Lett 367:778CrossRefGoogle Scholar
  54. 54.
    Heßelmann A, Jansen G (2003) Phys Chem Chem Phys 5:5010CrossRefGoogle Scholar
  55. 55.
    Moszynski R, Heijmen TGA, Jeziorski B (1996) Mol Phys 88:741Google Scholar
  56. 56.
    Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O'Neill DP, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2010) MOLPRO, a package of ab initio programs. http://www.molpro.net
  57. 57.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  58. 58.
    Lotrich VF, Szalewicz K (1997) J Chem Phys 106:9668CrossRefGoogle Scholar
  59. 59.
    Lotrich VF, Szalewicz K (2000) J Chem Phys 112:112CrossRefGoogle Scholar
  60. 60.
    Podeszwa R, Szalewicz K (2007) J Chem Phys 126:194101CrossRefGoogle Scholar
  61. 61.
    Hankins D, Moskowitz JW, Stillinger FH (1970) J Chem Phys 53:4544CrossRefGoogle Scholar
  62. 62.
    Christie RA, Jordan KD (2005) Struct Bond 116:27CrossRefGoogle Scholar
  63. 63.
    Harmony MD et al (1979) J Phys Chem Ref Data 8:619CrossRefGoogle Scholar
  64. 64.
    Dalby FW (1958) Can J Phys 36:1336CrossRefGoogle Scholar
  65. 65.
    NIST Standard Reference Database. http://webbook.nist.gov/chemistry
  66. 66.
    Paulini R, Muller K, Diederich F (2005) Angew Chem Int Ed 44:1788CrossRefGoogle Scholar
  67. 67.
    Yap GPA, Jove FA, Claramunt RM, Sanz D, Alkorta I, Elguero J (2005) Aus J Chem 58:817CrossRefGoogle Scholar
  68. 68.
    Martín Pendás A, Blanco MA, Costales A, Mori Sánchez P, Luaña V (1999) Phys Rev Lett 83:1930CrossRefGoogle Scholar
  69. 69.
    Mata I, Alkorta I, Molins E, Espinosa E (2010) Chem Eur J 16:2442CrossRefGoogle Scholar
  70. 70.
    Solimannejad M, Massahi S, Alkorta I (2011) Int J Quantum Chem 111:3057CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Quantum Chemistry Group, Department of Chemistry, Faculty of SciencesArak UniversityArakIran
  2. 2.Instituto de Química Médica (CSIC)MadridSpain

Personalised recommendations