Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Conformational analysis of caprolactam, cycloheptene and caprolactone

  • 382 Accesses

  • 12 Citations

Abstract

The conformations of ε-caprolactam, cis-cycloheptene and ε-caprolactone have been investigated at the B3LYP and CCSD(T) levels of theory using the 6-311+G(d,p) basis set. Inversion of the most stable chair conformation was calculated to require a free energy of ΔG  = 10.5 kcal/mol for caprolactam, ΔG  = 5.0 kcal/mol for cycloheptene and ΔG  = 8.4 kcal/mol for caprolactone. These results are in good agreement with the available experimental data of 10.3 and 5.0 kcal/mol for caprolactam and cycloheptene, respectively. Analysis of a classical force field expression fitted to the quantum mechanical energy surface suggests that the caprolactam ring is more strained than cycloheptene owing to unfavourable bending interactions.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bocian DF, Strauss HL (1977) J Am Chem Soc 99:2866–2876

  2. 2.

    Bocian DF, Strauss HL (1977) J Am Chem Soc 99:2876–2882

  3. 3.

    Espinosa A, Gallo MA, Entrena A, Gómez JA (1994) J Mol Struct 323:247–256

  4. 4.

    Entrena A, Jaime C, Espinosa A, Gallo MA (1989) J Org Chem 54:1745–1748

  5. 5.

    Freeman F, Hwang JH, Junge EH, Parmar PD, Renz Z, Trinh J (2008) Int J Quantum Chem 108:339–350

  6. 6.

    Espinosa A, Gallo MA, Entrena A, Gómez JA (1994) J Mol Struct 326:249–260

  7. 7.

    Kesharwani MK, Tiel W, Ganguly B (2010) J Phys Chem A 114:10684–10693

  8. 8.

    Espinosa A, Gallo MA, Entrena A, Campos J, Domínguez JF, Camacho E, Sánchez I (1993) J Mol Struct 296:133–144

  9. 9.

    Haghdadi M, Hamzehluiyan M (2008) Chin J Chem 26:471–479

  10. 10.

    Bocian DF, Strauss HL (1977) J Chem Phys 67:1071–1081

  11. 11.

    Dillen J (2010) J Mol Struct (Theochem) 959:62–65

  12. 12.

    Leong MK, Mastryukov VS, Boggs JE (1998) J Mol Struct 445:149–160

  13. 13.

    Mastryukov VS, Chen K-H, Allinger NL (2001) J Phys Chem A 105:8562–8566

  14. 14.

    Squillacote ME, DeFillipis J, Shu Q (2005) J Am Chem Soc 127:15983–15988

  15. 15.

    Nevins N, Stewart EL, Allinger NL, Bowen JPh (1994) J Phys Chem 98:2056–2061

  16. 16.

    Winkler FK, Dunitz JD (1975) Acta Crystallogr Sect B 31:268–269

  17. 17.

    Oya H, Myasnikova RM (1974) Zh Strukt Khim 15:679–685

  18. 18.

    Borgen G, Rise F (1993) Magn Reson Chem 31:51–53

  19. 19.

    Ermolaeva LI, Mastryukov VS, Allinger NL, Almenningen A (1989) J Mol Struct 196:151–156

  20. 20.

    Allinger NL, Sprague JT (1972) J Am Chem Soc 94:5734–5747

  21. 21.

    Favini G, Nava A (1973) Theor Chim Acta 31:261–268

  22. 22.

    Ermer O, Lifson S (1973) J Am Chem Soc 95:4121–4132

  23. 23.

    De Clercq P (1981) J Org Chem 46:667–675

  24. 24.

    Allinger NL, Li F, Yan L (1990) J Comput Chem 7:848–867

  25. 25.

    Nevins N, Chen K, Allinger NL (1996) J Comput Chem 17:669–694

  26. 26.

    Allen FH (2002) Acta Crystallogr Sect B 58:380–388

  27. 27.

    St-Jacques M, Vaziri C (1971) Can J Chem 49:1256–1261

  28. 28.

    Donald CC (1987) J Phys Chem 91:4235–4237

  29. 29.

    Yartseva AA, Koldrov LSh, Galibeev SS, Arkhireev VP, Naumkina NI, Litvinov IA, Gubaidullin AT (2007) J Struct Chem 48:1138–1144

  30. 30.

    Emel’yanenko VN, Verevkin SP, Stepurko EN, Roganov GN, Georgieva MK (2010) Russ J Phys Chem A 84:356–363

  31. 31.

    Allinger NL, Zhu ZS, Chen K (1992) J Am Chem Soc 114:6120–6133

  32. 32.

    Saunders M, Jiménez-Vázquez HA (1993) J Comput Chem 14:330–348

  33. 33.

    Gaussian 09, Revision A0, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford, CT

  34. 34.

    Becke AD (1988) Phys Rev A 38:3098–3100

  35. 35.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

  36. 36.

    Vosko H, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

  37. 37.

    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

  38. 38.

    Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358

  39. 39.

    Bocian DF, Picket HM, Rounds TC, Strauss HL (1975) J Am Chem Soc 97:687–695

  40. 40.

    Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

  41. 41.

    Cain D, Pawar DM, Noe EA (2004) J Mol Struct (Theochem) 674:251–255

  42. 42.

    Dillen J (1992) J Comput Chem 13:257–267

  43. 43.

    Dillen J (1995) J Comput Chem 16:595–609

  44. 44.

    Allinger NL, Chen K, Lii J-H (1996) J Comput Chem 17:642–668

Download references

Acknowledgments

This research was supported by the National Research Foundation (NRF), grant 2074739.

Author information

Correspondence to Jan Dillen.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Groenewald, F., Dillen, J. Conformational analysis of caprolactam, cycloheptene and caprolactone. Struct Chem 23, 723–732 (2012). https://doi.org/10.1007/s11224-011-9921-x

Download citation

Keywords

  • DFT
  • CCSD(T)
  • Force field