Advertisement

Structural Chemistry

, Volume 23, Issue 3, pp 659–670 | Cite as

A combined crystallographic, spectroscopic, antimicrobial, and computational study of novel dipicolinate copper(II) complex with 2-(2-hydroxyethyl)pyridine

  • Ömer Tamer
  • Bahtiyar Sarıboğa
  • İbrahim UçarEmail author
Original Research

Abstract

Novel dipicolinate complex of copper(II) ion, [Cu(hepy)(dpc)H2O] [hepy: 2-(2-hydroxyethyl)pyridine; dpc: dipicolinate or pyridine-2,6-dicarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. [Cu(hepy)(dpc)H2O] was investigated for antimicrobial activity against a fungal strain, Gram-positive, and Gram-negative bacteria. The compound was found to be active against of all microorganisms (MIC values 512–1,024 μg mL−1). The mixed-ligand copper(II) complex was satisfactorily modeled by calculations based on following hybrid density functionals: LSDA, BPV86, B3LYP, B3PW91, MPW1PW91, PBEPBE, and HCTH. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, calculated data show that the predicted geometries can reproduce the structural parameters. The performance of these functional approaches for the calculation of electron paramagnetic resonance hyperfine coupling constant Cu2+ ion was evaluated critically by comparison with experimental data. The g values obtained from density functional theory (DFT) calculations were in compatible with the experimental results, whereas the A values were not. Electronic structure of the complex was calculated using time-dependent DFT method with the polarizable continuum model. Descriptions of frontier molecular orbitals and the relocation of the electron density of the compound were determined. Because the calculations of vibrations were carried out in gaseous phase there were shifts in vibration frequencies above 3,000 cm−1.

Keywords

Dipicolinic acid X-ray diffraction Antimicrobial activity Vibrational spectra UV–Vis Quantum chemical calculations 

References

  1. 1.
    Udo S (1936) J Agric Chem Soc Jpn 12:386–394Google Scholar
  2. 2.
    Edgecombe KE, Weaver DF, Smith VH (1994) Can J Chem 72:1388–1403CrossRefGoogle Scholar
  3. 3.
    Hameka HF, Jensen JO, Jensen JL, Merrow CN, Vlahacos CP (1996) J Mol Struct (Theochem) 365:131–141CrossRefGoogle Scholar
  4. 4.
    Singh RP (1987) Curr Sci 56:1232–1234Google Scholar
  5. 5.
    Janssen FW, Lund AJ, Anderson LE (1958) Science 127:26–27CrossRefGoogle Scholar
  6. 6.
    Murakami K, Tanemura Y, Yoshino M (2003) J Nutr Biochem 14:99–103CrossRefGoogle Scholar
  7. 7.
    Couper L, Mckendrick JE, Robins DJ, Chrystal EJT (1994) Bioorg Med Chem Lett 4:2267–2272CrossRefGoogle Scholar
  8. 8.
    Kazuhiro Y, NorikoY, Tadayasu F (1994) Eur Patent EP0603165Google Scholar
  9. 9.
    Burdock GA (1996) Ancyclopedia of food and color additives, vol 3. CRC Pres, Boca RatonGoogle Scholar
  10. 10.
    Kirillova MV, Da Silva MFCG, Kirillov AM, Da Silva JJRF, Pombeiro AJL (2007) Inorg Chim Acta 360:506–512CrossRefGoogle Scholar
  11. 11.
    Park H, Lough AJ, Kim JC, Jeong MH, Kang YS (2007) Inorg Chim Acta 360:2819–2823CrossRefGoogle Scholar
  12. 12.
    Moghimi A, Moosavi SM, Kordestani D, Maddah B, Shamsipur M, Aghabozorg H, Ramezanipour F, Kickelbick G (2007) J Mol Struct 828:38–45CrossRefGoogle Scholar
  13. 13.
    Wen YH, Cheng JK, Feng YL, Zhang J, Li ZJ, Yao YG (2005) Inorg Chim Acta 356:3347CrossRefGoogle Scholar
  14. 14.
    Uçar İ, Bulut A, Büyükgüngör O (2005) Acta Crystallogr C61:m479–m482Google Scholar
  15. 15.
    Uçar İ, Bulut I, Karabulut B, Bulut A, Büyükgüngör O (2007) J Mol Struct 834–836:336–344CrossRefGoogle Scholar
  16. 16.
    Saladino AC, Larsen SC (2005) Catal Today 105:122–133CrossRefGoogle Scholar
  17. 17.
    Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Agren H (2007) Chem Phys 332:176–187CrossRefGoogle Scholar
  18. 18.
    Clinical and Laboratory Standards Institute (CLSI) (2006) Methods of dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, M7-A7, 7th edn. CLSI, WayneGoogle Scholar
  19. 19.
    National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard M27-A2, 2nd edn. NCCLS, WayneGoogle Scholar
  20. 20.
    Stoe & Cie X-AREA (Version 1.18) and X-RED (Version 1.04), Stoe & Cie, Dermstadt, 2002Google Scholar
  21. 21.
    Altomera A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115CrossRefGoogle Scholar
  22. 22.
    Sheldric GM (1997) SHELXL97. University of Gottingen, GottingenGoogle Scholar
  23. 23.
    Brandenburg K (2005) DIAMOND, Demonstrated Version. Crystal Impact GbR, BonnGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, J.M. Millam JM, S.S. Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al- Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian, Inc., PittsburghGoogle Scholar
  25. 25.
    Dennington R II, Keith T, Milliam J (2007) GaussView Version 4.1.2. Semichem Inc., Shawnee MissionGoogle Scholar
  26. 26.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  27. 27.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  28. 28.
    Schlegel HB (1982) J Comput Chem 3:214–218CrossRefGoogle Scholar
  29. 29.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728CrossRefGoogle Scholar
  30. 30.
    Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789Google Scholar
  31. 31.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Peterson MR, Singh DJ, Fiolhais C (1992) Phys Rev B46:6671–6687Google Scholar
  33. 33.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B54:16533–16539Google Scholar
  34. 34.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  35. 35.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1399CrossRefGoogle Scholar
  38. 38.
    Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New YorkGoogle Scholar
  39. 39.
    Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271CrossRefGoogle Scholar
  40. 40.
    Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274–4298CrossRefGoogle Scholar
  41. 41.
    Menon AS, Radom L (2008) J Phys Chem A 112:13225–13230CrossRefGoogle Scholar
  42. 42.
    Dodds JL, McWeeny R, Sadlej AJ (1980) Mol Phys 41:1419CrossRefGoogle Scholar
  43. 43.
    Wolinski K, Hilton JF, Pulay P (1999) J Chem Phys 111:8251CrossRefGoogle Scholar
  44. 44.
    Kim KJ, Lee JH, Lee SH, Magn J (2004) Magn Mater 279:173–177CrossRefGoogle Scholar
  45. 45.
    Abada GA, Mutakainen I, Turpeinen U, Reedjik J (2002) Acta Cryst E 58:m55–m57CrossRefGoogle Scholar
  46. 46.
    Uçar İ, Bulut B, Bulut A, Karadağ A (2009) Struct Chem 20:825–838CrossRefGoogle Scholar
  47. 47.
    Uçar İ, Bulut A, Büyükgüngör O (2007) J Phys Chem Solids 68:2271–2277CrossRefGoogle Scholar
  48. 48.
    Yenikaya C, Poyraz M, Sarı M, Demirci F, İlkimen H, Büyükgüngör O (2009) Polyhedron 28:3526–3532CrossRefGoogle Scholar
  49. 49.
    Du M, Cai H, Zhao X-J (2006) Inorg Chim Acta 359:673–679CrossRefGoogle Scholar
  50. 50.
    Perry JJ, McManus GJ, Zaworotko MJ (2004) J Chem Cryst 34:877–881CrossRefGoogle Scholar
  51. 51.
    Mao L, Wang Y, Qi Y, Cao M, Hu C (2004) J Mol Struct 688:197–201CrossRefGoogle Scholar
  52. 52.
    Lah N, Leban I (2010) Struct Chem 21:263–267CrossRefGoogle Scholar
  53. 53.
    Cheng S-C, Wei H-H (2002) Inorg Chim Acta 340:105–113CrossRefGoogle Scholar
  54. 54.
    Malkina OL, Vaara J, Schimmelpfenning B, Munzarova M, Malkin VG, Kaupp M (2000) J Am Chem Soc 122:9206–9218CrossRefGoogle Scholar
  55. 55.
    Engstrom M, Minaev B, Vahtras O, Agren H (1998) Chem Phys 237:149–158CrossRefGoogle Scholar
  56. 56.
    Neese F (2005) J Chem Phys 122:34107–34119CrossRefGoogle Scholar
  57. 57.
    Gorelsky SI (2010) SWizard Program Revision 4.5, University of Ottawa, Ottawa, Canada. http://www.sg.chem.net/
  58. 58.
    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700CrossRefGoogle Scholar
  59. 59.
    Carmona P (1980) Spectrochim Acta A 36:705–712CrossRefGoogle Scholar
  60. 60.
    Van Albada GA, Gorter S, Reedijk J (1999) Polyhedron 18:1821–1824CrossRefGoogle Scholar
  61. 61.
    Robinson SD, Uttley MF (1973) J Chem Soc Dalton Trans 18:1912–1920CrossRefGoogle Scholar
  62. 62.
    Topacli A, Bayarı S (1999) Spectrochim Acta A 55:1389–1394CrossRefGoogle Scholar
  63. 63.
    Topacli A, Akyüz S (1995) Spectrochim Acta A 51:633–641CrossRefGoogle Scholar
  64. 64.
    Kolomenskii AA, Schuessler HA (2005) Spectrochim Acta A 61:647–651CrossRefGoogle Scholar
  65. 65.
    McCann K, Laane J (2008) J Mol Struct 890:346–358CrossRefGoogle Scholar
  66. 66.
    Gonzalez-Baro AC, Castellano EE, Piro OE, Parajon-Costa BS (2005) Polyhedron 24:49–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ömer Tamer
    • 1
  • Bahtiyar Sarıboğa
    • 2
  • İbrahim Uçar
    • 1
    Email author
  1. 1.Department of Physics, Faculty of Arts and SciencesOndokuzmayıs UniversitySamsunTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesNevşehir UniversityNevşehirTurkey

Personalised recommendations