Structural Chemistry

, Volume 23, Issue 2, pp 595–600 | Cite as

Calculation of the HOMA model parameters for the carbon–boron bond

  • Krzysztof K. Zborowski
  • Ibon Alkorta
  • Jose Elguero
  • Leonard M. Proniewicz
Original Research

Abstract

An extension of the harmonic oscillator model of aromaticity (HOMA) model to systems with carbon–boron bonds is presented. Model parameters were estimated using experimental and theoretical bond lengths. It is shown that both approaches produce very similar HOMA models. In the second part of the article, the aromaticity levels of several model compounds containing carbon–boron bonds are calculated using the previously obtained parameters. The results of these calculations are compared with those provided by other aromaticity indices. The aromaticity of boron-containing compounds is also compared with the aromaticity of analogous compounds containing carbon and nitrogen.

Keywords

Aromaticity HOMA model Boron compounds 

References

  1. 1.
    Krygowski TM, Cyranski MK (2001) Chem Rev 101:1385–1420CrossRefGoogle Scholar
  2. 2.
    Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842CrossRefGoogle Scholar
  3. 3.
    Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78CrossRefGoogle Scholar
  4. 4.
    Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713–1722CrossRefGoogle Scholar
  5. 5.
    Raczynska ED (2005) Pol J Chem 79:749–758Google Scholar
  6. 6.
    Zborowski KK, Proniewicz LM (2008) J Phys Org Chem 21:207–214CrossRefGoogle Scholar
  7. 7.
    Zborowski KK, Proniewicz LM (2009) Pol J Chem 83:477–484Google Scholar
  8. 8.
    Madura ID, Krygowski TM, Cyranski MK (1998) Tetrahedron 54:14913–14918CrossRefGoogle Scholar
  9. 9.
    Krogh-Jespersen K, Cremer D, Dill JD, Pople JA, PvR Schleyer (1981) J Am Chem Soc 103:2589–2594CrossRefGoogle Scholar
  10. 10.
    Aihara J, Kanno H, Ishida T (2005) J Am Chem Soc 127:13324–13330CrossRefGoogle Scholar
  11. 11.
    Del Bene JE, Yañez M, Alkorta I, Elguero J (2009) J Chem Theory Comp 5:2239–2247CrossRefGoogle Scholar
  12. 12.
    Yu HL, Sang RL, Wu YY (2009) J Phys Chem A 113:3382–3386CrossRefGoogle Scholar
  13. 13.
    Kiran B, Gopa Kumar G, Nguyen MT, Kandalam AK, Jena P (2009) Inorg Chem 48:9965–9967CrossRefGoogle Scholar
  14. 14.
    Ruman T, Jarmuła A, Rode W (2010) Bioorg Chem 38:242–245CrossRefGoogle Scholar
  15. 15.
    Pauling L (1947) J Am Chem Soc 69:542–553CrossRefGoogle Scholar
  16. 16.
    Krygowski TM, Cyranski MK (1996) Tetrahedron 52:10255–10264CrossRefGoogle Scholar
  17. 17.
    Schleyer PvR, Marker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  18. 18.
    Schleyer PvR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes NJRV (2001) Org Lett 3:2465–2468CrossRefGoogle Scholar
  19. 19.
    Corminboeuf C, Heine T, Seifert G, Schleyer PvR, Weber J (2004) Phys Chem Chem Phys 6:273–276CrossRefGoogle Scholar
  20. 20.
    Sola M, Feixas F, Jimenez-Halla JOC, Matito E, Poater J (2010) Symmetry 2:1156–1179CrossRefGoogle Scholar
  21. 21.
    Palusiak M, Krygowski TM (2007) Chem Eur J 13:7996–8006CrossRefGoogle Scholar
  22. 22.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University, New YorkGoogle Scholar
  23. 23.
    Keith TA, AIMAll (Version 09.11.08, standard), TK Gristmill Software, Overland Park KS, USA, 2009. http://aim.tkgristmill.com
  24. 24.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  25. 25.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1372CrossRefGoogle Scholar
  26. 26.
    Becke AD (1993) J Chem Phys 98:5648–5653CrossRefGoogle Scholar
  27. 27.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655CrossRefGoogle Scholar
  28. 28.
    Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  29. 29.
    Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross J, Bakken BV, Adamo C, Jaramillo J, Gomperts JR, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PA, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CTGoogle Scholar
  30. 30.
    Boese R, Paetzold P, Tapper A, Ziembinski R (1989) Chem Ber 122:1057–1060CrossRefGoogle Scholar
  31. 31.
    Schleyer PvR, Jiao H, van Eikema Hommes JR, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669–12670CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Krzysztof K. Zborowski
    • 1
  • Ibon Alkorta
    • 2
  • Jose Elguero
    • 2
  • Leonard M. Proniewicz
    • 1
    • 3
  1. 1.Faculty of Chemistry, Jagiellonian University in KrakowKrakówPoland
  2. 2.Instituto de Química Médica (C.S.I.C.)MadridSpain
  3. 3.The State Higher Vocational SchoolTarnówPoland

Personalised recommendations