Structural Chemistry

, Volume 23, Issue 3, pp 613–626 | Cite as

Molecular structure and character of bonding of mono and divalent metal cations (Li+, Na+, K+, Mg2+, Ca2+, Zn2+, and Cu+) with guanosine: AIM and NBO analysis

  • Maryam S. Ahmadi
  • Mehdi Shakourian-Fard
  • Alireza FattahiEmail author
Original Research


The B3LYP/6-311++G (d,p) density functional approach was used to study the gas-phase metal affinities of Guanosine (ribonucleoside) for the Li+, Na+, K+, Mg2+, Ca2+, Zn2+, and Cu+ cations. In this study we determine coordination geometries, binding strength, absolute metal ion affinities, and free energies for the most stable products. We have also compared the results for Guanosine, with our previously reported results for 2′-Deoxyguanosine. Based on the results, it is obvious that MIA is strongly dependent on the charge-to-size ratio of the cation. Guanosine interacts more strongly with Zn2+ than do with Mg2+, Ca2+, and Cu+ and therefore stronger interactions lead to higher MIA. In both free molecules and their complexes, the Syn orientation of the base is stabilized by an intramolecular O5′–H···N3 hydrogen bond and the anti orientation of the base is stabilized by an intramolecular C–H···O hydrogen bond formed between the (C8-H8) and the O5′ atom of the sugar moiety. It is also interesting to mention that linear correlation between calculated MIA values and the atomic numbers (Z) of the metal ions of Li+, Na+, and K+ were found. Furthermore, the influences of metal cationization on the strength of the N-glycosidic bond, torsion angles, angle of pseudorotation (P), and intramolecular C–H···O and O–H···O hydrogen bonds have been studied. Natural bond orbital (NBO) analysis was performed to calculate the charge transfer and natural population analysis of the complexes. Quantum theory of atoms in molecules (QTAIM) was also applied to determine the nature of interactions.


Metal complexation Guanosine N-glycosidic bond Natural bonding orbital (NBO) Quantum theory of atoms in molecules (QTAIM) 



Support from Sharif University of Technology is gratefully acknowledged.

Supplementary material

11224_2011_9906_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 38 kb)


  1. 1.
    Eichhorn GL (1981) Adv Inorg Biochem 3:1Google Scholar
  2. 2.
    Saenger W (1984) Principles of nucleic acid structure. Springer-Verlag, New YorkCrossRefGoogle Scholar
  3. 3.
    Martin RB (1993) Acc Chem Res 22:255Google Scholar
  4. 4.
    Sigel H (1993) Chem Soc ReV 22:255CrossRefGoogle Scholar
  5. 5.
    Sigel A, Sigel H (1996) Interactions of metal ions with nucleotides, nucleic acids and their constituents. Metal ions in biological systems. Marcel Dekker, New YorkGoogle Scholar
  6. 6.
    Sigel A, Sigel H (1966) Probing of nucleic acids by metal ion complexes of small molecules. Metal ions in biological systems. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Nakano SI, Fujimote M, Hara H, Sugimoto N (1999) Nucleic Acids Res 27:2957CrossRefGoogle Scholar
  8. 8.
    Potaman VN, Soyfer VN (1994) J Biol Struct Dyn 11:1035Google Scholar
  9. 9.
    Gushlbauer W, Chantot JF, Thiele DJ (1990) Biol Struct Dyn 8:491Google Scholar
  10. 10.
    Martin RB (1985) Accounts Chem Res 18:32CrossRefGoogle Scholar
  11. 11.
    Misra VK, Draper DE (1998) Biopolymers 48:113CrossRefGoogle Scholar
  12. 12.
    Lindqvist M, Sandstrom K, Lieppins V, Stromberg R, Graslund A (2001) RNA 7:1115CrossRefGoogle Scholar
  13. 13.
    Sundquist WI, Heaphy S (1993) Proc Natl Acad Sci USA 90:3393CrossRefGoogle Scholar
  14. 14.
    Bray A, Lews J, Walter RR (1998) Essential cell biology. An introduction to the molecular biology of the cell. Garland Publishing, Inc., New YorkGoogle Scholar
  15. 15.
    Theophanides T, Anastassopoulou J, Anifantakis B, Anifantakis ZA, Dovas A, Theophanides T (1997) In: Magnesium: current status and new developments. Kluwer Academic Publishers, DordrechtGoogle Scholar
  16. 16.
    Durlach J, Bara M (2000) Le magne′sium en biologie et enme′dicine, Tec. Et Doc. Lavoisier, ParisGoogle Scholar
  17. 17.
    Eichhorn GL (2973) In: Eichhorn GL (ed) Inorganic biochemistry. Elsevier, New YorkGoogle Scholar
  18. 18.
    Loeb LA, Zakour AR (1980) In: Spiro TG (ed) Nucleic acids metal ion interactions. Wiley, New YorkGoogle Scholar
  19. 19.
    Lindahl T, Nyberg B (1972) Biochemistry 11:3610CrossRefGoogle Scholar
  20. 20.
    Lo¨nnberg H, Lehikoinen P (1982) Nucleic Acids Res 10:4339CrossRefGoogle Scholar
  21. 21.
    Clarke MJ, Morrissey PE (1983) Inorg Chim Acta 80:69CrossRefGoogle Scholar
  22. 22.
    Remaud G, Zhou XX, Chattopadhyaya J, Oivanen M, Lo¨nnberg H (1987) Tetrahedron 43:4453CrossRefGoogle Scholar
  23. 23.
    Arpalahti J, Ka¨ppi R, Hovinen J, Lo¨nnberg H, Chattopadhyaya J (1989) Tetrahedron 45:3945CrossRefGoogle Scholar
  24. 24.
    Kumar AM, Nayak R (1990) Biochem Biophys Res Commun 173:731CrossRefGoogle Scholar
  25. 25.
    Laayoun A, De′cout JL, Lhomme J (1994) Tetrahedron Lett 35:4989CrossRefGoogle Scholar
  26. 26.
    Lindahl T (1993) Nature 362:709CrossRefGoogle Scholar
  27. 27.
    Ahmadi MS, Fattahi A (2010) J Theor Comput Chem 9:3585CrossRefGoogle Scholar
  28. 28.
    Ahmadi MS, Fattahi A (2011) Sci Iran (in press)Google Scholar
  29. 29.
    Sychrovsky V, Muller N, Schneider B, Smrecki V, Spirko V, Sponer J, Trantirek L (2005) J Am Chem Soc 127:14663CrossRefGoogle Scholar
  30. 30.
    Spartan 04. Wavefunction Inc., IrvineGoogle Scholar
  31. 31.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  32. 32.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  33. 33.
    Peschke M, Blades AT, Kebarle P (2000) J Am Chem Soc 122:1492CrossRefGoogle Scholar
  34. 34.
    Zhu W, Luo X, Puah MC, Tan X, Shen J, Gu J, Chen K, Jiang H (2004) J Phys Chem A 108:4008CrossRefGoogle Scholar
  35. 35.
    Altona C, Sundaralingam M (1972) J Am Chem Soc 94:8205CrossRefGoogle Scholar
  36. 36.
    Donohue J, Trueblood KN (1960) J Mol Biol 2:363CrossRefGoogle Scholar
  37. 37.
    Jardetzki O, Roberts GC (1981) NMR in molecular biology. Academic Press, New YorkGoogle Scholar
  38. 38.
    Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J (2000) J Mol Struct 526:329CrossRefGoogle Scholar
  39. 39.
    Hocquet A (2001) Phys Chem Chem Phys 3:3192CrossRefGoogle Scholar
  40. 40.
    Foloppe N, MacKerell AD (1998) J Phys Chem B 102:6669CrossRefGoogle Scholar
  41. 41.
    Foloppe N, MacKerell AD (1999) Biophys J 76:3206CrossRefGoogle Scholar
  42. 42.
    Hocquet A, Leulliot N, Ghomi M (2000) J Phys Chem B 104:4560CrossRefGoogle Scholar
  43. 43.
    Foloppe N, Nilsson L, MacKerell AD (2002) Biopolymers 61:61CrossRefGoogle Scholar
  44. 44.
    Brameld KA, Goddard WA (1999) J Am Chem Soc 121:985CrossRefGoogle Scholar
  45. 45.
    Foloppe N, Hartmann B, Nilsson L, MacKerell AD (2002) Biophys J 82:1554CrossRefGoogle Scholar
  46. 46.
    Shishkin OV, Gorb L, Zhikol OA, Leszczynski J (2004) J Biomol Struct Dyn 21:53Google Scholar
  47. 47.
    Shishkin OV, Gorb L, Zhikol OA, Leszczynski J (2004) J Biomol Struct Dyn 22:227Google Scholar
  48. 48.
    Kumar MK, Rao JS, Prabhakar S, Vairamani M, Sastry GN (2005) Chem Commun 11:1420CrossRefGoogle Scholar
  49. 49.
    Allen RN, Shukla MK, Burda JV, Leszczynski J (2006) J Phys Chem A 110:6139CrossRefGoogle Scholar
  50. 50.
    Shishkin OV, Gorb LA, Leszczynski J (2009) J Struct Chem 20:743CrossRefGoogle Scholar
  51. 51.
    Sukhanov OS, Shishkin OV, Gorb L, Leszczynski J (2008) J Struct Chem 19: 171Google Scholar
  52. 52.
    Rios-Font R, Bertran J, Rodrı′guez-Santiago L, Sodupe M (2006) J Phys Chem B 110:5767CrossRefGoogle Scholar
  53. 53.
    Aamouche A, Berthier G, Cadioli B, Gallinella E, Ghomi M (1998) J Mol Struct Theochem 426:307CrossRefGoogle Scholar
  54. 54.
    Rablen PR, Lockman JW, Jorgensen WL (1998) J Phys Chem A 102:3782CrossRefGoogle Scholar
  55. 55.
    Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411CrossRefGoogle Scholar
  56. 56.
    Hocquet A, Ghomi M (2000) Phys Chem Chem Phys 2:5351CrossRefGoogle Scholar
  57. 57.
    Desiraju GR (1996) Acc Chem ReV 29:441CrossRefGoogle Scholar
  58. 58.
    Steiner T (2002) Angew Chem Int Ed 41:48CrossRefGoogle Scholar
  59. 59.
    Bader RFW (1991) Chem Rev 91:893CrossRefGoogle Scholar
  60. 60.
    Pakiari AH, Jamshidi Z (2008) J Phys Chem A 112:7969CrossRefGoogle Scholar
  61. 61.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University press, OxfordGoogle Scholar
  62. 62.
    Bader RFW (1998) J Phys Chem A 102:7314CrossRefGoogle Scholar
  63. 63.
    Cremer D, KraKa E (1984) Angew Chem 23:627CrossRefGoogle Scholar
  64. 64.
    Pakiari AH, Jamshidi Z (2007) J Phys Chem A 111:4391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maryam S. Ahmadi
    • 1
  • Mehdi Shakourian-Fard
    • 1
  • Alireza Fattahi
    • 1
    Email author
  1. 1.Department of ChemistrySharif University of TechnologyTehranIran

Personalised recommendations