Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular structure of p-diisocyanobenzene from gas-phase electron diffraction and theoretical calculations and effects of intermolecular interactions in the crystal on the benzene ring geometry

Abstract

In this study, the molecular structure of p-diisocyanobenzene has been determined by gas-phase electron diffraction and quantum chemical calculations. The electron diffraction intensities from a previous study by Colapietro et al. (J Mol Struct 125:19–32, 1984) have been reanalyzed using geometrical constraints and initial values of vibrational amplitudes from computations. The equilibrium structure of the molecule has D 2h symmetry, whereas the average geometry in the gaseous phase is best described by a non-planar model of C 2v symmetry. The lowering of symmetry is due to large-amplitude motion of the substituents out of the plane of the benzene ring. The non-planar model has an internal ring angle at the ipso position, ∠aC2–C1–C6 = 120.6 ± 0.2°, about 1° smaller than that from the previous study, but consistent with the quantum chemical calculations. The mean length of the ring C–C bonds and the length of the triple bond are accurately determined as 〈r g(C–C)〉 = 1.398 ± 0.003 Å and r g(NC) = 1.177 ± 0.002 Å, respectively. Comparison with the gaseous isoelectronic molecules p-diethynylbenzene and p-dicyanobenzene shows that the differences in the mean lengths of the ring C–C bonds and in the lengths of the triple bonds determined by electron diffraction are equal or closely similar to the corresponding differences from quantum chemical calculations. The present experimental value of the ipso angle in free p-diisocyanobenzene is slightly, but significantly smaller than that obtained by X-ray crystallography. The difference is confirmed by computational modeling of the crystal structure and appears to be due to –NC···H–C intermolecular interactions in the crystal.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Domenicano A, Murray-Rust P, Vaciago A (1983) Acta Crystallogr B 39:457–468

  2. 2.

    Campanelli AR, Domenicano A, Ramondo F (2003) J Phys Chem A 107:6429–6440

  3. 3.

    Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004) J Phys Chem A 108:4940–4948

  4. 4.

    Campanelli AR, Domenicano A, Macchiagodena M, Ramondo F (2011) Struct Chem 22:1131–1141

  5. 5.

    Domenicano A, Arcadi A, Ramondo F, Campanelli AR, Portalone G, Schultz G, Hargittai I (1996) J Phys Chem 100:14625–14629

  6. 6.

    Campanelli AR, Arcadi A, Domenicano A, Ramondo F, Hargittai I (2006) J Phys Chem A 110:2045–2052

  7. 7.

    Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2008) J Phys Chem A 112:10998–11008

  8. 8.

    Colapietro M, Domenicano A, Portalone G, Torrini I, Hargittai I, Schultz G (1984) J Mol Struct 125:19–32

  9. 9.

    Poirier R, Kari R, Csizmadia IG (1985) Handbook of Gaussian basis sets: a compendium for ab initio molecular orbital calculations. Elsevier, Amsterdam

  10. 10.

    Dunning TH Jr (1989) J Chem Phys 90:1007–1023

  11. 11.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

  12. 12.

    Moran D, Simmonett AC, Leach FE III, Allen WD, Schleyer PvR, Schaefer HF III (2006) J Am Chem Soc 128:9342–9343

  13. 13.

    Hedberg L, Mills IM (2000) J Mol Spectrosc 203:82–95

  14. 14.

    Hedberg L, Mills IM (1993) J Mol Spectrosc 160:117–142

  15. 15.

    Hargittai I, Hernádi J, Kolonits M (1972) Prib Tekh Eksp 239–240

  16. 16.

    Tremmel J, Kolonits M, Hargittai I (1977) J Phys E 10:664

  17. 17.

    Hargittai I, Tremmel J, Kolonits M (1980) Hung Sci Instrum 50:31–42

  18. 18.

    Domenicano A, Schultz G, Kolonits M, Hargittai I (1979) J Mol Struct 53:197–209

  19. 19.

    Colapietro M, Domenicano A, Portalone G, Schultz G, Hargittai I (1987) J Phys Chem 91:1728–1737

  20. 20.

    Andersen B, Seip HM, Strand TG, Stølevik R (1969) Acta Chem Scand 23:3224–3234

  21. 21.

    Portalone G, Domenicano A, Schultz G, Hargittai I (1989) J Mol Struct (Theochem) 186:185–196

  22. 22.

    Gauss J, Stanton JF (2000) J Phys Chem A 104:2865–2868

  23. 23.

    Plíva J, Johns JWC, Goodman L (1991) J Mol Spectrosc 148:427–435

  24. 24.

    Maslen PE, Handy NC, Amos RD, Jayatilaka D (1992) J Chem Phys 97:4233–4254

  25. 25.

    Colapietro M, Domenicano A, Portalone G, Schultz G, Hargittai I (1984) J Mol Struct 112:141–157

  26. 26.

    Campanelli AR, Domenicano A, Ramondo F (2006) J Phys Chem A 110:10122–10129

  27. 27.

    Domenicano A (1992) In: Domenicano A, Hargittai I (eds) Accurate molecular structures: their determination and importance, Chap. 18. Oxford University Press, Oxford, pp 437–468

  28. 28.

    Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry. Allyn and Bacon, Boston; (2012) Dover, Mineola, NY

Download references

Acknowledgments

This study was supported by the CASPUR Supercomputing Center, Rome, with Standard HPC Grant 2011 (“A combined X-ray absorption spectroscopy, molecular dynamics simulations, and quantum mechanics calculation procedure for the structural characterization of ill-defined systems”).

Author information

Correspondence to Aldo Domenicano or István Hargittai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 100 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Campanelli, A.R., Domenicano, A., Ramondo, F. et al. Molecular structure of p-diisocyanobenzene from gas-phase electron diffraction and theoretical calculations and effects of intermolecular interactions in the crystal on the benzene ring geometry. Struct Chem 23, 287–295 (2012). https://doi.org/10.1007/s11224-011-9889-6

Download citation

Keywords

  • Gas-phase electron diffraction
  • MO calculations
  • p-Diisocyanobenzene
  • p-Dicyanobenzene
  • p-Diethynylbenzene
  • Equilibrium C–C bond distances
  • p-Diisocyanobenzene pentamer
  • Gas–solid structural differences