Advertisement

Structural Chemistry

, Volume 23, Issue 1, pp 287–295 | Cite as

Molecular structure of p-diisocyanobenzene from gas-phase electron diffraction and theoretical calculations and effects of intermolecular interactions in the crystal on the benzene ring geometry

  • Anna Rita Campanelli
  • Aldo DomenicanoEmail author
  • Fabio Ramondo
  • István HargittaiEmail author
Original Research

Abstract

In this study, the molecular structure of p-diisocyanobenzene has been determined by gas-phase electron diffraction and quantum chemical calculations. The electron diffraction intensities from a previous study by Colapietro et al. (J Mol Struct 125:19–32, 1984) have been reanalyzed using geometrical constraints and initial values of vibrational amplitudes from computations. The equilibrium structure of the molecule has D 2h symmetry, whereas the average geometry in the gaseous phase is best described by a non-planar model of C 2v symmetry. The lowering of symmetry is due to large-amplitude motion of the substituents out of the plane of the benzene ring. The non-planar model has an internal ring angle at the ipso position, ∠aC2–C1–C6 = 120.6 ± 0.2°, about 1° smaller than that from the previous study, but consistent with the quantum chemical calculations. The mean length of the ring C–C bonds and the length of the triple bond are accurately determined as 〈r g(C–C)〉 = 1.398 ± 0.003 Å and r g(NC) = 1.177 ± 0.002 Å, respectively. Comparison with the gaseous isoelectronic molecules p-diethynylbenzene and p-dicyanobenzene shows that the differences in the mean lengths of the ring C–C bonds and in the lengths of the triple bonds determined by electron diffraction are equal or closely similar to the corresponding differences from quantum chemical calculations. The present experimental value of the ipso angle in free p-diisocyanobenzene is slightly, but significantly smaller than that obtained by X-ray crystallography. The difference is confirmed by computational modeling of the crystal structure and appears to be due to –NC···H–C intermolecular interactions in the crystal.

Keywords

Gas-phase electron diffraction MO calculations p-Diisocyanobenzene p-Dicyanobenzene p-Diethynylbenzene Equilibrium C–C bond distances p-Diisocyanobenzene pentamer Gas–solid structural differences 

Notes

Acknowledgments

This study was supported by the CASPUR Supercomputing Center, Rome, with Standard HPC Grant 2011 (“A combined X-ray absorption spectroscopy, molecular dynamics simulations, and quantum mechanics calculation procedure for the structural characterization of ill-defined systems”).

Supplementary material

11224_2011_9889_MOESM1_ESM.doc (100 kb)
Supplementary material 1 (DOC 100 kb)

References

  1. 1.
    Domenicano A, Murray-Rust P, Vaciago A (1983) Acta Crystallogr B 39:457–468CrossRefGoogle Scholar
  2. 2.
    Campanelli AR, Domenicano A, Ramondo F (2003) J Phys Chem A 107:6429–6440CrossRefGoogle Scholar
  3. 3.
    Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004) J Phys Chem A 108:4940–4948CrossRefGoogle Scholar
  4. 4.
    Campanelli AR, Domenicano A, Macchiagodena M, Ramondo F (2011) Struct Chem 22:1131–1141CrossRefGoogle Scholar
  5. 5.
    Domenicano A, Arcadi A, Ramondo F, Campanelli AR, Portalone G, Schultz G, Hargittai I (1996) J Phys Chem 100:14625–14629CrossRefGoogle Scholar
  6. 6.
    Campanelli AR, Arcadi A, Domenicano A, Ramondo F, Hargittai I (2006) J Phys Chem A 110:2045–2052CrossRefGoogle Scholar
  7. 7.
    Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2008) J Phys Chem A 112:10998–11008CrossRefGoogle Scholar
  8. 8.
    Colapietro M, Domenicano A, Portalone G, Torrini I, Hargittai I, Schultz G (1984) J Mol Struct 125:19–32CrossRefGoogle Scholar
  9. 9.
    Poirier R, Kari R, Csizmadia IG (1985) Handbook of Gaussian basis sets: a compendium for ab initio molecular orbital calculations. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  11. 11.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  12. 12.
    Moran D, Simmonett AC, Leach FE III, Allen WD, Schleyer PvR, Schaefer HF III (2006) J Am Chem Soc 128:9342–9343CrossRefGoogle Scholar
  13. 13.
    Hedberg L, Mills IM (2000) J Mol Spectrosc 203:82–95CrossRefGoogle Scholar
  14. 14.
    Hedberg L, Mills IM (1993) J Mol Spectrosc 160:117–142CrossRefGoogle Scholar
  15. 15.
    Hargittai I, Hernádi J, Kolonits M (1972) Prib Tekh Eksp 239–240Google Scholar
  16. 16.
    Tremmel J, Kolonits M, Hargittai I (1977) J Phys E 10:664CrossRefGoogle Scholar
  17. 17.
    Hargittai I, Tremmel J, Kolonits M (1980) Hung Sci Instrum 50:31–42Google Scholar
  18. 18.
    Domenicano A, Schultz G, Kolonits M, Hargittai I (1979) J Mol Struct 53:197–209CrossRefGoogle Scholar
  19. 19.
    Colapietro M, Domenicano A, Portalone G, Schultz G, Hargittai I (1987) J Phys Chem 91:1728–1737CrossRefGoogle Scholar
  20. 20.
    Andersen B, Seip HM, Strand TG, Stølevik R (1969) Acta Chem Scand 23:3224–3234CrossRefGoogle Scholar
  21. 21.
    Portalone G, Domenicano A, Schultz G, Hargittai I (1989) J Mol Struct (Theochem) 186:185–196CrossRefGoogle Scholar
  22. 22.
    Gauss J, Stanton JF (2000) J Phys Chem A 104:2865–2868CrossRefGoogle Scholar
  23. 23.
    Plíva J, Johns JWC, Goodman L (1991) J Mol Spectrosc 148:427–435CrossRefGoogle Scholar
  24. 24.
    Maslen PE, Handy NC, Amos RD, Jayatilaka D (1992) J Chem Phys 97:4233–4254CrossRefGoogle Scholar
  25. 25.
    Colapietro M, Domenicano A, Portalone G, Schultz G, Hargittai I (1984) J Mol Struct 112:141–157CrossRefGoogle Scholar
  26. 26.
    Campanelli AR, Domenicano A, Ramondo F (2006) J Phys Chem A 110:10122–10129CrossRefGoogle Scholar
  27. 27.
    Domenicano A (1992) In: Domenicano A, Hargittai I (eds) Accurate molecular structures: their determination and importance, Chap. 18. Oxford University Press, Oxford, pp 437–468Google Scholar
  28. 28.
    Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry. Allyn and Bacon, Boston; (2012) Dover, Mineola, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Chemistry, Chemical Engineering and MaterialsUniversity of L’AquilaL’AquilaItaly
  3. 3.Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences and Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations