Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular designing and DFT investigation of novel alternating donor–acceptor dibenzo[b,d]thiophen-based systems: from monomer to polymer

Abstract

The structures and properties of dibenzo[b,d]thiophene (DBT) based alternating donor–acceptor conjugated oligomers, in which thieno[3,4-b]pyrazine (TP), thieno[3,4-b]thiadiazole (TD), and [1,2,5]thiadiazolo[3,4-e]thieno[3,4-b]pyrazine (TTP) as acceptors, and their periodic polymers were investigated by the density function theory (DFT) at the B3LYP/6-31G(d) level. The bond length, electron density at bond critical points (BCPs) and nucleus-independent chemical shift (NICS) are analyzed and correlated with the conductive properties. NICS shows that the conjugation degree is increased with main chain extension. Research results show the conductive ability of compounds with 1:2 D–A ratio is better than that with 1:1 D–A ratio. The reorganization energies and energy bands also are considered. The results suggest that (BTDDBT) n and (BTPDDBT) n have small reorganization energy (0.163 and 0.152 eV, respectively) and quite low energy gap (0.73 and 0.56 eV, respectively), which indicate that they may be potential organic conductive materials.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3

References

  1. 1.

    Mullekom HAMv, Vekemans JAJM, Havinga EE, Meijer EW (2001) Mater Sci Eng R 32:1

  2. 2.

    Roncali J (1997) Chem Rev 97:173

  3. 3.

    Ajayaghosh A (2003) Chem Soc Rev 32:181

  4. 4.

    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 16:578

  5. 5.

    Chiang CK, Park YW, Heeger AJ, Shirakawa H, Louis EJ, MacDiarmid AK (1977) Phys Rev Lett 39:1098

  6. 6.

    Thompson BC, Madrigal LG, Pinto MR, Kang T-S, Schanze KS, Reynolds JR (2005) J Polym Sci A 43:1417

  7. 7.

    Kulkarni AP, Zhu Y, Jenekhe SA (2005) Macromolecules 38:1553

  8. 8.

    Brédas JL, Heeger AJ, Wudl F (1986) J Chem Phys 85:4673

  9. 9.

    Tachibana M, Tanaka S, Yamashita Y, Yoshizawa K (2002) J Phys Chem B 106:3549

  10. 10.

    Babel A, Jenekhe SA (2002) J Phys Chem B 106:6129

  11. 11.

    Katz HE, Bao Z (2000) J Phys Chem B 104:671

  12. 12.

    Wudl F, Kobayashi M, Heeger AJ (1984) J Org Chem 49:3382

  13. 13.

    Kobayashi M, Colaneri N, Boysel M, Wudl F, Heeger AJ (1985) J Chem Phys 82:5717

  14. 14.

    Colaneri N, Kobayashi M, Heeger AJ, Wudl F (1986) Synth Met 14:45

  15. 15.

    Lowe JP, Kafafi SA (1984) J Am Chem Soc 106:5837

  16. 16.

    Soos ZG, Hayden GW (1989) Synth Met 28:D543

  17. 17.

    Ferraris JP, Lambert TM (1991) J Chem Soc Chem Commun 1268

  18. 18.

    Bredas JL, Chance RR, Baughman RH (1982) J Chem Phys 76:3673

  19. 19.

    Kertesz M, Hoffmann R (1983) Solid State Commun 47:97

  20. 20.

    Yamabe T, Tanaka K, Ohzeki K, Yata S (1982) Solid State Commun 44:823

  21. 21.

    Tanaka K, Ueda K, Koike T, Yamabe T (1984) Solid State Commun 51:943

  22. 22.

    Havinga EE, ten Hoeve W, Wynberg H (1992) Polym Bull 29:119

  23. 23.

    Havinga EE, ten Hoeve W, Wynberg H (1993) Synth Met 55:299

  24. 24.

    Pomfret SJ, Monkman AP, Havinga EE (1996) Synth Met 78:285

  25. 25.

    Memoto N, Kameshima H, Okano Y, Endo T (2003) J Polym Sci A 41:1521

  26. 26.

    Mikroyannidis JA, Spiliopoulos IK, Kulkarni AP, Jenekhe SA (2004) Synth Met 142:113

  27. 27.

    Li JY, Zhou XR, Zhao DF (2005) Chemistry 68:1

  28. 28.

    Morrison JJ, Murray MM, Li XC, Holmes AB, Morratti SC, Friend RH, Sirringhaus H (1999) Synth Met 102:987

  29. 29.

    Venanzi M, Bocchinfuso G, Palleschi A, Abreu AS, Ferreira PMT, Queiroz M-JRP (2005) J Photochem Photobiol A 170:181

  30. 30.

    Li XC, Sirringhaus H, Garnier F, Holmes AB, Moratti SC, Feede N, Cleggr W, Teat SJ, Friend RH (1998) J Am Chem Soc 120:2206

  31. 31.

    Sirringhaus H, Friend RH, Wang C, Leuninger J, Mullen K (1999) J Mater Chem 9:2095

  32. 32.

    Sirringhaus H, Friend RH, Li XC, Moratti SC, Holmes AB, Feeder N (1997) Appl Phys Lett 71:3871

  33. 33.

    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

  34. 34.

    Becke AD (1993) J Chem Phys 98:5648

  35. 35.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

  36. 36.

    Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRv (1996) J Am Chem Soc 118:6317

  37. 37.

    Schleyer PvR, Jiao H, Hommes NVE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669

  38. 38.

    Bader RFW (1990) Atoms in molecules: a quantum theory. International Series of Monographs on Chemistry, vol 22. Oxford University Press, Oxford

  39. 39.

    Pai CL, Liu CL, Chen WC, Jenekhe SA (2006) Polymer 47:699

  40. 40.

    Ishida M, Nakajima T, HondaY Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, MW Gill P, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Revision A1. Gaussian Inc, Pittsburgh

  41. 41.

    Fu Y, Shen W, Li MT (2008) Polymer 49:2614

  42. 42.

    Fu Y, Shen W, Li M (2008) Macromol Theory Simul 17:385

  43. 43.

    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842

  44. 44.

    Shen W, Li M, He R, Zhang J, Lei W (2007) Polymer 48:3912

  45. 45.

    Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 21073144), and by Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 200806350013), and by Natural Science Foundation Project of CQ CSTC (Grant No. CSTC, 2009BB4104), and by Fundamental Research Funds for the Central Universities (Grant No. XDJK2010B009).

Author information

Correspondence to Wei Shen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deng, L., Shen, W., Xie, X. et al. Molecular designing and DFT investigation of novel alternating donor–acceptor dibenzo[b,d]thiophen-based systems: from monomer to polymer. Struct Chem 23, 97–106 (2012). https://doi.org/10.1007/s11224-011-9838-4

Download citation

Keywords

  • Dibenzo[b,d]thiophene
  • DFT
  • Electronic properties
  • Reorganization energy
  • Conductive materials