Structural Chemistry

, Volume 22, Issue 6, pp 1287–1295 | Cite as

Helix and H-bond formations of alanine-based peptides containing basic amino acids

  • Balázs Leitgeb
  • Gábor Janzsó
  • Liza Hudoba
  • Botond Penke
  • Gábor Rákhely
  • Ferenc Bogár
Original Research


We studied comprehensively the helicity and H-bonding evolutions during the folding processes of Lys- and Arg-containing alanine-based peptides. The evolution of α-helical conformation concerning the entire sequence and each amino acid residue was examined, as well as the helix-forming propensities were characterized. The formation of various types of the intramolecular H-bonds was also investigated, pointing out the helix-stabilizing role of local interactions and the destabilizing role of non-local interplays. Our study led to the observation that the non-local H-bonds affected the evolution of helical conformations, as well as the entire folding processes.


Alanine-based peptide Molecular dynamics Folding Helical conformation Intramolecular H-bond 


  1. 1.
    Eaton WA, Munoz V, Hagen SJ, Jas GS, Lapidus LJ, Henry ER, Hofrichter J (2000) Annu Rev Biophys Biomol Struct 29:327–359CrossRefGoogle Scholar
  2. 2.
    Shea J-E, Brooks CL III (2001) Annu Rev Phys Chem 52:499–535CrossRefGoogle Scholar
  3. 3.
    Daggett V, Fersht AR (2003) Trends Biochem Sci 28:18–25CrossRefGoogle Scholar
  4. 4.
    Ferguson N, Fersht AR (2003) Curr Opin Struct Biol 13:75–81CrossRefGoogle Scholar
  5. 5.
    De Mori GMS, Meli M, Monticelli L, Colombo G (2005) Mini Rev Med Chem 5:353–359CrossRefGoogle Scholar
  6. 6.
    Osterhout JJ (2005) Protein Peptide Lett 12:159–164CrossRefGoogle Scholar
  7. 7.
    Baldwin RL (2007) J Mol Biol 371:283–301CrossRefGoogle Scholar
  8. 8.
    Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) Annu Rev Biophys 37:289–316CrossRefGoogle Scholar
  9. 9.
    Morra G, Meli M, Colombo G (2008) Curr Protein Pept Sci 9:181–196CrossRefGoogle Scholar
  10. 10.
    Aurora R, Creamer TP, Srinivasan R, Rose GD (1997) J Biol Chem 272:1413–1416CrossRefGoogle Scholar
  11. 11.
    Makhatadze GI (2005) Adv Protein Chem 72:199–226CrossRefGoogle Scholar
  12. 12.
    Marqusee S, Baldwin RL (1987) Proc Natl Acad Sci USA 84:8898–8902CrossRefGoogle Scholar
  13. 13.
    Marqusee S, Robbins VH, Baldwin RL (1989) Proc Natl Acad Sci USA 86:5286–5290CrossRefGoogle Scholar
  14. 14.
    Miick SM, Martinez GV, Fiori WR, Todd AP, Millhauser GL (1992) Nature 359:653–655CrossRefGoogle Scholar
  15. 15.
    Rohl CA, Scholtz JM, York EJ, Stewart JM, Baldwin RL (1992) Biochemistry 31:1263–1269CrossRefGoogle Scholar
  16. 16.
    Fiori WR, Miick SM, Millhauser GL (1993) Biochemistry 32:11957–11962CrossRefGoogle Scholar
  17. 17.
    Miick SM, Casteel KM, Millhauser GL (1993) Biochemistry 32:8014–8021CrossRefGoogle Scholar
  18. 18.
    Chakrabartty A, Kortemme T, Baldwin RL (1994) Protein Sci 3:843–852CrossRefGoogle Scholar
  19. 19.
    Fiori WR, Lundberg KM, Millhauser GL (1994) Nature Struct Biol 1:374–377CrossRefGoogle Scholar
  20. 20.
    Smythe ML, Nakaie CR, Marshall GR (1995) J Am Chem Soc 117:10555–10562CrossRefGoogle Scholar
  21. 21.
    Yoder G, Pancoska P, Keiderling TA (1997) Biochemistry 36:15123–15133CrossRefGoogle Scholar
  22. 22.
    Silva RAGD, Nguyen JY, Decatur SM (2002) Biochemistry 41:15296–15303CrossRefGoogle Scholar
  23. 23.
    Wang T, Zhu Y, Getahun Z, Du D, Huang C-Y, DeGrado WF, Gai F (2004) J Phys Chem B 108:15301–15310CrossRefGoogle Scholar
  24. 24.
    Zagrovic B, Jayachandran G, Millett IS, Doniach S, Pande VS (2005) J Mol Biol 353:232–241CrossRefGoogle Scholar
  25. 25.
    Barber-Armstrong W, Donaldson T, Wijesooriya H, Silva RAGD, Decatur SM (2004) J Am Chem Soc 126:2339–2345CrossRefGoogle Scholar
  26. 26.
    Takekiyo T, Shimizu A, Kato M, Taniguchi Y (2005) Biochim Biophys Acta 1750:1–4Google Scholar
  27. 27.
    Millhauser GL, Stenland CJ, Hanson P, Bolin KA, van de Ven FJM (1997) J Mol Biol 267:963–974CrossRefGoogle Scholar
  28. 28.
    Freedberg DI, Venable RM, Rossi A, Bull TE, Pastor RW (2004) J Am Chem Soc 126:10478–10484CrossRefGoogle Scholar
  29. 29.
    Samuelson SO, Martyna GJ (1998) J Chem Phys 109:11061–11073CrossRefGoogle Scholar
  30. 30.
    Samuelson S, Martyna GJ (1999) J Phys Chem B 103:1752–1766CrossRefGoogle Scholar
  31. 31.
    Sorin EJ, Pande VS (2005) Biophys J 88:2472–2493CrossRefGoogle Scholar
  32. 32.
    Hénin J, Schulten K, Chipot C (2006) J Phys Chem B 110:16718–16723CrossRefGoogle Scholar
  33. 33.
    Garcia AE, Sanbonmatsu KY (2002) Proc Natl Acad Sci USA 99:2782–2787CrossRefGoogle Scholar
  34. 34.
    Nymeyer H, Garcia AE (2003) Proc Natl Acad Sci USA 100:13934–13939CrossRefGoogle Scholar
  35. 35.
    Shental-Bechor D, Kirca S, Ben-Tal N, Haliloglu T (2005) Biophys J 88:2391–2402CrossRefGoogle Scholar
  36. 36.
    Morozov AN, Lin SH (2006) J Phys Chem B 110:20555–20561CrossRefGoogle Scholar
  37. 37.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San FranciscoGoogle Scholar
  38. 38.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  39. 39.
    Lee MC, Duan Y (2004) Proteins 55:620–634CrossRefGoogle Scholar
  40. 40.
    Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 246:122–129CrossRefGoogle Scholar
  41. 41.
    Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824–19839CrossRefGoogle Scholar
  42. 42.
    Tsui V, Case DA (2001) Biopolymers (Nucl Acid Sci) 56:275–291CrossRefGoogle Scholar
  43. 43.
    Weiser J, Shenkin PS, Still WC (1999) J Comput Chem 20:217–230CrossRefGoogle Scholar
  44. 44.
    Leitgeb B, Kerényi Á, Bogár F, Paragi G, Penke B, Rákhely G (2007) J Mol Model 13:1141–1150CrossRefGoogle Scholar
  45. 45.
    Wang W-Z, Lin T, Sun Y-C (2007) J Phys Chem B 111:3508–3514CrossRefGoogle Scholar
  46. 46.
    Topol IA, Burt SK, Deretey E, Tang T-H, Perczel A, Rashin A, Csizmadia IG (2001) J Am Chem Soc 123:6054–6060CrossRefGoogle Scholar
  47. 47.
    Zhang L, Hermans J (1994) J Am Chem Soc 116:11915–11921CrossRefGoogle Scholar
  48. 48.
    Takano M, Yamato T, Higo J, Suyama A, Nagayama K (1999) J Am Chem Soc 121:605–612CrossRefGoogle Scholar
  49. 49.
    Huo S, Straub JE (1999) Proteins 36:249–261CrossRefGoogle Scholar
  50. 50.
    Millhauser GL (1995) Biochemistry 34:3873–3877CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Balázs Leitgeb
    • 1
  • Gábor Janzsó
    • 1
  • Liza Hudoba
    • 1
  • Botond Penke
    • 2
    • 4
  • Gábor Rákhely
    • 1
    • 3
  • Ferenc Bogár
    • 2
    • 4
  1. 1.Institute of BiophysicsBiological Research Center of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Department of Medical ChemistryUniversity of SzegedSzegedHungary
  3. 3.Department of BiotechnologyUniversity of SzegedSzegedHungary
  4. 4.Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary

Personalised recommendations