Structural Chemistry

, 22:1225 | Cite as

Structural insight into repeated-rhomboid coordination polymers from 4,4′-dithiodipyridine and zinc nitrate

  • Rüdiger W. Seidel
  • Christina Dietz
  • Iris M. Oppel
Original Research


Reaction of Zn(NO3)2·6H2O with the bent bridging ligand 4,4′-dithiodipyridine (dtdp), showing axial chirality, in the presence of the chelating 1,10-phenanthroline (phen) ligand in ethanol yielded [{Zn(μ-dtdp)2(H2O)2}(NO3)2·2C2H5OH·2H2O]n (1). In 1, Zn2+ ions are linked by two dtdp ligands of opposite chirality into a one-dimensional coordination polymer of the repeated-rhomboid type; the phen co-ligand was not encountered in the crystal. Pseudo-symmetry of the lattice is discussed for 1. Reaction of Zn(NO3)2·6H2O and dtdp in an ethanol/water mixture in absence of phen led to the known repeated-rhomboid coordination polymer [{Zn(NO3)(μ-dtdp)2(H2O)}NO3·4H2O]n (2), the crystal structure of which was redetermined at 110 K. At low temperature, the nitrato-κO ligand in one axial position of Zn2+ was found to be non-disordered as distinct from the room temperature structure (Horikoshi and Mikuriya, Cryst Growth Des 5:223–230, 2005). The Zn2+ ions in 2 are joined by two dtdp ligands of the same chirality.


Coordination polymer 4,4′-Dithiodipyridine Zinc Crystal structure 


  1. 1.
    Bureekaew S, Shimomura S, Kitagawa S (2008) Sci Technol Adv Mater 9:014108CrossRefGoogle Scholar
  2. 2.
    Perry JJ IV, Perman JA, Zaworotko MJ (2009) Chem Soc Rev 38:1400–1417CrossRefGoogle Scholar
  3. 3.
    Kuppler RJ, Timmons DJ, Fang Q-R, Lia J-R, Makala TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou H-C (2009) Coord Chem Rev 253:3042–3066CrossRefGoogle Scholar
  4. 4.
    Farrusseng D, Aguado S, Pinel C (2009) Angew Chem Int Ed 48:7502–7513CrossRefGoogle Scholar
  5. 5.
    Shimomura S, Bureekaew S, Kitagawa S (2009) Struct Bond 132:51–86CrossRefGoogle Scholar
  6. 6.
    Janiak C, Vieth JK (2010) New J Chem 34:2366–2388CrossRefGoogle Scholar
  7. 7.
    Fujita M, Yoshizawa M (2008) In: Diederich F, Stang PJ, Tykwinski RR (ed) Modern supramolecular chemistry. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Yoshizawa M, Klosterman JK, Fujita M (2009) Angew Chem Int Ed 48:3418–3438CrossRefGoogle Scholar
  9. 9.
    Noro S-i, Kitagawa S, Akutagawa T, Nakamura T (2009) Prog Polym Sci 34:240–279CrossRefGoogle Scholar
  10. 10.
    Kessler H, Rundel W (1968) Chem Ber 101:3350–3357CrossRefGoogle Scholar
  11. 11.
    Horikoshi R, Mochida T (2006) Coord Chem Rev 259:2595–2609CrossRefGoogle Scholar
  12. 12.
    Seidel RW, Oppel IM (2009) Acta Cryst C65:m235–m237Google Scholar
  13. 13.
    Dietz C, Seidel RW, Oppel IM (2009) Z Kristallogr New Cryst Struct 224:509–511Google Scholar
  14. 14.
    Seidel RW, Dietz C, Oppel IM (2011) Z Anorg Allg Chem 637:94–101CrossRefGoogle Scholar
  15. 15.
    Erxleben A (2003) Coord Chem Rev 246:203–228CrossRefGoogle Scholar
  16. 16.
    CrysAlisPro (2010) Agilent Technologies UK Ltd, Yarnton, Oxfordshire, EnglandGoogle Scholar
  17. 17.
    Blessing RH (1995) Acta Cryst A51:33–38Google Scholar
  18. 18.
    Sheldrick GM (2008) Acta Cryst A64:112–122Google Scholar
  19. 19.
    Spek AL (2009) Acta Cryst D65:148–155Google Scholar
  20. 20.
    Brandenburg K (2010) Crystal Impact GbR, Bonn, GermanyGoogle Scholar
  21. 21.
    Horikoshi R, Mikuriya M (2005) Cryst Growth Des 5:223–230CrossRefGoogle Scholar
  22. 22.
    Araya MA, Cotton FA, Matonic JH, Murillo CA (1995) Inorg Chem 34:5424–5428CrossRefGoogle Scholar
  23. 23.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555–1573CrossRefGoogle Scholar
  24. 24.
    Wu B-L, Xu Y-q, Gong Y-g, Huang Y-g, Hong M-c (2007) J Coord Chem 60:2527–2532CrossRefGoogle Scholar
  25. 25.
    Luo J, Hong M, Wang R, Yuan D, Cao R, Han L, Xu Y, Lin Z (2003) Eur J Inorg Chem 3623–3632Google Scholar
  26. 26.
    Manna SC, Konar S, Zangrando E, Drew MGB, Ribas J, Chaudhuri NR (2005) Eur J Inorg Chem 1751–1758Google Scholar
  27. 27.
    Manna SC, Ghosh AK, Zangrando E, Chaudhuri NR (2007) Polyhedron 26:1105–1112CrossRefGoogle Scholar
  28. 28.
    Manna SC, Ribas J, Zangrando E, Chaudhuri NR (2007) Polyhedron 26:4923–4928CrossRefGoogle Scholar
  29. 29.
    Carballo R, Covelo B, Fernandez-Hermida N, Lago AB, Vazquez-Lopez EM (2009) CrystEngComm 11:817–826CrossRefGoogle Scholar
  30. 30.
    Zhu H-L, Zhang J, Lin J-L (2010) Acta Cryst E66:m185Google Scholar
  31. 31.
    Suen M-C, Wang Y-H, Hsu Y-F, Yeh C-W, Chen J-D, Wang J-C (2005) Polyhedron 24:2913–2920CrossRefGoogle Scholar
  32. 32.
    Ghosh AK, Ghoshal D, Ribas J, Zangrando E, Chaudhuri NR (2006) J Mol Struct 796:195–202CrossRefGoogle Scholar
  33. 33.
    Carballo R, Covelo B, Fernandez-Hermida N, Vazquez-Lopez EM (2007) Z Anorg Allg Chem 633:1787–1790CrossRefGoogle Scholar
  34. 34.
    Suen M-C, Wang J-C (2006) Struct Chem 17:315–322CrossRefGoogle Scholar
  35. 35.
    Yang X, Li D, Fu F, Tang L, Yang J, Wang L, Wang Y (2008) Z Anorg Allg Chem 634:2634–2638CrossRefGoogle Scholar
  36. 36.
    Zhang J, Xu W (2010) Acta Cryst E66:m788–m789Google Scholar
  37. 37.
    Kondo M, Shimamura M, Noro S-i, Kimura Y, Uemura K, Kitagawa S (2000) J Solid State Chem 152:113–119CrossRefGoogle Scholar
  38. 38.
    Yan L (2008) Z Kristallogr New Cryst Struct 223:533–534Google Scholar
  39. 39.
    Zhang J-P, Huang X-C, Chen X-M (2009) Chem Soc Rev 38:2385–2396CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rüdiger W. Seidel
    • 1
  • Christina Dietz
    • 2
  • Iris M. Oppel
    • 3
  1. 1.Lehrstuhl für Analytische ChemieRuhr-Universität BochumBochumGermany
  2. 2.Lehrstuhl für Anorganische ChemieTechnische Universität DortmundDortmundGermany
  3. 3.Institut für Anorganische ChemieRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations