Advertisement

Structural Chemistry

, Volume 22, Issue 2, pp 433–439 | Cite as

Comparative X-ray structural study of laterally mono-ethyl substituted 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetra-methoxycalix[4]arene and its non-substituted parent compound including guest free and solvated forms. Chemical straightening of guest channels

  • Conrad Fischer
  • Guisheng Lin
  • Petra Bombicz
  • Wilhelm Seichter
  • Edwin WeberEmail author
Original Research

Abstract

Three solvate crystal structures of the laterally ethyl substituted tetra-tert-butyltetramethoxycalix[4]arene 1 [(1·THF (1a), 1·CHCl3 (1b) and 1·CH2Cl2 (1c)] are compared to the corresponding solvent-free structure (1) using single crystal X-ray structure determination, isostructurality and molecular isometricity calculations. To study the effect of the lateral substitution, the laterally non-substituted host with the guest THF (2a) is also included to the comparison. The calixarene molecules in the different structures all adopt the partial cone conformation with different affection of the respective guest molecules, always being positioned interstitially. Depending on the lateral substitution and the size of the included guests, the molecular conformation of the calix[4]arene shows small differences relating to the alignment of the arene units. The channels disposable of the solvent guest molecules in the crystal structures straighten as the effect of lateral substitution of the host calix[4]arene. The orthorhombic crystal structures of 1ac are isostructural irrespective of the included solvent molecules, while 1 and 2a crystallise in the same monoclinic space group.

Keywords

Calix[4]arene Inclusion compounds Single crystal X-ray analysis Isostructurality calculations Crystal engineering 

Notes

Acknowledgment

Financial support from the German Federal Ministry of Economics and Technology (BMWi) under grant N 16IN0218 “ChemoChips” is gratefully acknowledged.

References

  1. 1.
    Gutsche CD (2008) Calixarenes: an introduction. Monographs in supramolecular chemistry. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Vicens J, Harrowfield J (2007) Calixarenes in the nanoworld. Springer, DordrechtCrossRefGoogle Scholar
  3. 3.
    Scully PA, Hamilton TM, Bennett JL (2001) Org Lett 3:2741CrossRefGoogle Scholar
  4. 4.
    Kuno L, Seri N, Biali SE (2007) Org Lett 9:1577CrossRefGoogle Scholar
  5. 5.
    Kuno L, Biali SE (2009) Org Lett 11:3662CrossRefGoogle Scholar
  6. 6.
    Kogan K, Itzhak N, Biali SE (2010) Supramol Chem 22:704CrossRefGoogle Scholar
  7. 7.
    Biali SE, Böhmer V, Cohen S, Ferguson G, Gruettner C, Grynszpan F, Paulus EF, Thondorf I, Vogt W (1996) J Am Chem Soc 118:12938CrossRefGoogle Scholar
  8. 8.
    Bergamaschi M, Bigi F, Lanfranchi M, Maggi R, Pastorio A, Pellinghelli MA, Peri F, Porta C, Sartori G (1997) Tetrahedron 53:13037CrossRefGoogle Scholar
  9. 9.
    Hertel MP, Behrle AC, Williams SA, Schmidt JAR, Fantini JL (2009) Tetrahedron 65:8657CrossRefGoogle Scholar
  10. 10.
    Gruner M, Fischer C, Gruber T, Weber E (2010) Supramol Chem 22:256CrossRefGoogle Scholar
  11. 11.
    Gruber T, Gruner M, Fischer C, Seichter W, Bombicz P, Weber E (2010) New J Chem 34:250CrossRefGoogle Scholar
  12. 12.
    Fischer C, Gruber T, Seichter W, Weber E (2007) Acta Crystallogr E63:o4572Google Scholar
  13. 13.
    Kálmán A, Párkányi L, Argay G (1993) Acta Crystallogr B49:1039Google Scholar
  14. 14.
    Kálmán A, Párkányi L (1997) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 3. JAI Press, Greenwich, pp 189–226Google Scholar
  15. 15.
    Sheldrick GM (2008) Acta Crystallogr A64:112Google Scholar
  16. 16.
    Gruber T, Weber E, Seichter W (2006) Supramol Chem 18:537CrossRefGoogle Scholar
  17. 17.
    Grootenhuis PDJ, Kollman PA, Groenen LC, Reinhoudt DN, van Hummel GJ, Ugozzoli F, Andreetti GD (1990) J Am Chem Soc 112:4165CrossRefGoogle Scholar
  18. 18.
    Nishio M, Umezawa Y, Honda K, Tsuboyama S, Suezawa H (2009) CrystEngComm 11:1757CrossRefGoogle Scholar
  19. 19.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Janiak C (2000) J Chem Soc, Dalton Trans 3885Google Scholar
  21. 21.
    Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New YorkGoogle Scholar
  22. 22.
    Vittal J, Zaworotko M, Tiekink ER (2010) Organic crystal engineering. Wiley, New YorkGoogle Scholar
  23. 23.
    Dalgarno SJ, Thallapally PK, Barbour LJ, Atwood JL (2007) Chem Soc Rev 36:236CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Conrad Fischer
    • 1
  • Guisheng Lin
    • 1
  • Petra Bombicz
    • 2
  • Wilhelm Seichter
    • 1
  • Edwin Weber
    • 1
    Email author
  1. 1.Institut für Organische Chemie, TU Bergakademie FreibergFreibergGermany
  2. 2.Institute of Structural Chemistry, Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations