Advertisement

Structural Chemistry

, Volume 22, Issue 1, pp 225–233 | Cite as

Temperature-dependent synthesis, crystal structures, characterizations, and DFT calculations of two new copper(II) complexes with p-fluorobenzoic acid and 2,2′-bipyridine ligands

  • Zhi Qiang ShiEmail author
  • Ning Ning Ji
  • Ren Gao Zhao
  • Ji Kun Li
  • Zhi Feng Li
Original Research

Abstract

Two new copper(II) complexes, [Cu(p-FBA)2(2,2′-bpy)]·(H2O) (1) and [Cu(p-FBA)(2,2′-bpy)2]·(p-FBA)2 (2) {p-FBA = p-fluorobenzoic acid, 2,2′-bpy = 2,2′-bipyridine} have been obtained from an identical starting mixture using temperature as the only independent variable and characterized by X-ray single crystal diffraction as well as with infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The results reveal that 1 has 1D infinite chain structure formed by O–H···O hydrogen bonds, while 2 features a 0D structure. Additionally, there exist C–H···O hydrogen bonds and π–π stacking interactions in 1, forming 2D supramolecular structure. Furthermore, density functional theory (DFT) calculations of the structures, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the [Cu(p-FBA)2(2,2′-bpy)] of 1 and [Cu(p-FBA)(2,2′-bpy)2]+ cation of 2 were performed by means of Gaussian 03W package and taking B3LYP/lanl2dz basis set.

Keywords

Copper(II) complexes Temperature X-ray diffraction Thermal stability DFT calculations 

Notes

Acknowledgment

This work was supported by the Postgraduate Foundation of Taishan University (project no: Y07-2-16).

References

  1. 1.
    Kitagawa S, Kitaura R, Noro SI (2004) Angew Chem Int Ed 43(18):2334–2375CrossRefGoogle Scholar
  2. 2.
    Vaidhyanathan R, Natarajan S, Rao CNR (2002) Inorg Chem 41(17):4496–4501CrossRefGoogle Scholar
  3. 3.
    Zaworotko MJ (2000) Angew Chem Int Ed 39(17):3052–3054Google Scholar
  4. 4.
    Carlucci L, Ciani G, Proserpio DM (2003) Coord Chem Rev 246(1–2):247–289CrossRefGoogle Scholar
  5. 5.
    Batten SR, Robson R (1998) Angew Chem Int Ed 37(11):1460–1494CrossRefGoogle Scholar
  6. 6.
    Yam VWW, Lo KKW (1999) Chem Soc Rev 28:323–334CrossRefGoogle Scholar
  7. 7.
    Ma Y, Chao HY, Wu Y, Lee ST, Yu WY, Che CM (1998) Chem Commun 22:2491–2492CrossRefGoogle Scholar
  8. 8.
    Liu GX, Zhu K, Chen H, Huang RY, Ren XM (2009) Z Anogr Allg Chem 635(1):156–164CrossRefGoogle Scholar
  9. 9.
    Li D, Wu T, Zhou XP, Zhou R, Huang XC (2005) Angew Chem Int Ed 44(27):4175–4178CrossRefGoogle Scholar
  10. 10.
    Peng R, Li D, Wu T, Zhou XP, Ng SW (2006) Inorg Chem 45(10):4035–4046CrossRefGoogle Scholar
  11. 11.
    Zhan SZ, Li D, Zhou XP, Xh Zhou (2006) Inorg Chem 45(23):9163–9165CrossRefGoogle Scholar
  12. 12.
    Zhou XP, Ni WX, Zhan SZ, Ni J, Li D, Yin YG (2007) Inorg Chem 46(7):2345–2347CrossRefGoogle Scholar
  13. 13.
    Zhan SS, Zhan SZ, Li M, Peng R, Li D (2007) Inorg Chem 46(11):4365–4367CrossRefGoogle Scholar
  14. 14.
    Ni WX, Li M, Zhou XP, Li Z, Huang XC, Li D (2007) Chem Commun 33:3479–3481CrossRefGoogle Scholar
  15. 15.
    Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982–986CrossRefGoogle Scholar
  16. 16.
    Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K (2000) J Am Chem Soc 126(1):32–33CrossRefGoogle Scholar
  17. 17.
    Ogawa M, Kuroda K (1995) Chem Rev 95(2):399–438CrossRefGoogle Scholar
  18. 18.
    Zeng MH, Zhang WX, Sun XZ, Chen XM (2005) Angew Chem Int Ed 44(20):3079–3082CrossRefGoogle Scholar
  19. 19.
    Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Acc Chem Res 34(4):319–330CrossRefGoogle Scholar
  20. 20.
    Evans OR, Lin W (2002) Acc Chem Res 35(7):511–522CrossRefGoogle Scholar
  21. 21.
    Brammer L (2004) Chem Soc Rev 33:476–489CrossRefGoogle Scholar
  22. 22.
    Wang YB, Wang ZM, Yan CH, Jin LP (2004) J Mol Struct 692(1–3):177–186CrossRefGoogle Scholar
  23. 23.
    Suh MP, Shim BY, Yoon TS (1994) Inorg Chem 33(24):5509–5514CrossRefGoogle Scholar
  24. 24.
    Battistuzzi G, Borsari M, Menabue L, Sola SMM (1996) Inorg Chem 35(14):4239–4247CrossRefGoogle Scholar
  25. 25.
    Dalgarno SJ, Hardie MJ, Raston CL (2004) Cryst Growth Des 4(2):227–234CrossRefGoogle Scholar
  26. 26.
    Zhou ZH, Deng YF, Wan HL (2005) Cryst Growth Des 5(3):1109–1117CrossRefGoogle Scholar
  27. 27.
    Go YB, Wang X, Anokhina EV, Jacobson AJ (2005) Inorg Chem 44(23):8265–8271CrossRefGoogle Scholar
  28. 28.
    Zheng PQ, Ren YP, Long LS, Huang RB, Zheng LS (2005) Inorg Chem 44(5):1190–1192CrossRefGoogle Scholar
  29. 29.
    Zhang GQ, Yang GQ, Ma JS (2006) Cryst Growth Des 6(2):375–381CrossRefGoogle Scholar
  30. 30.
    Lu WG, Jiang L, Feng XL, Lu TB (2006) Cryst Growth Des 6(2):564–571CrossRefGoogle Scholar
  31. 31.
    Wu ST, Long LS, Huang RB, Zheng LS (2007) Cryst Growth Des 7(9):1746–1752CrossRefGoogle Scholar
  32. 32.
    Chermette H (1998) Coord Chem Rev 178–180:699–721CrossRefGoogle Scholar
  33. 33.
    Machura B, Wolffl M, Świtlickal A, Kruszynski R, Mroziński J (2010) Struct Chem 24:761–769CrossRefGoogle Scholar
  34. 34.
    Bruker (2005) APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USAGoogle Scholar
  35. 35.
    Sheldrick GM (2008) Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  37. 37.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  38. 38.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  39. 39.
    Bondi A (1964) J Phys Chem 68(3):441–451CrossRefGoogle Scholar
  40. 40.
    Zhao PS, Shao DL, Zhang J, Wei Y, Jian FF (2009) Bull Korean Chem Soc 30(7):1667–1670CrossRefGoogle Scholar
  41. 41.
    Ji NN, Shi ZQ, Zhao RG, Zheng ZB, Li ZF (2010) Bull Korean Chem Soc 31(4):881–886CrossRefGoogle Scholar
  42. 42.
    Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, LondonGoogle Scholar
  43. 43.
    Liu BY, Liu Z, Han GC, Li YH (2010) J Mol Struct 975(1–3):194–199CrossRefGoogle Scholar
  44. 44.
    Şükriye G, Namık Ö, Tülay BD, Bahri Ü, Muharrem D, Ömer A (2010) Polyhedron 29(12):2393–2403CrossRefGoogle Scholar
  45. 45.
    Yang HY, Hou HW, Fan YT (2009) Inorg Chim Acta 362(7):2418–2422CrossRefGoogle Scholar
  46. 46.
    Xia SW, Xu X, Sun YL, Fan YH, Bi CF, Zhang DM, Yang LR (2006) Chin J Struct Chem 25(2):197–203Google Scholar
  47. 47.
    Blower PJ, Dilworth JR, Maurer RI, Mullen GD, Reynolds CA, Zheng YF (2001) J Inorg Biochem 85(1):15–22CrossRefGoogle Scholar
  48. 48.
    Süleymanoğlu N, Ustabaş R, Alpaslan YB, Çoruh U, Karakuş S, Rollas S (2010) Struct Chem 21(2):59–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zhi Qiang Shi
    • 1
    Email author
  • Ning Ning Ji
    • 2
  • Ren Gao Zhao
    • 1
  • Ji Kun Li
    • 1
  • Zhi Feng Li
    • 3
  1. 1.Department of Materials Science and Chemical EngineeringTaishan UniversityTaianPeople’s Republic of China
  2. 2.Department of Chemistry and Environment ScienceTaishan UniversityTaianPeople’s Republic of China
  3. 3.College of Life Science and ChemistryTianshui Normal UniversityTianshuiPeople’s Republic of China

Personalised recommendations