Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis, characterizations, and optical properties of copper selenide quantum dots

Abstract

We demonstrate the synthesis of copper selenide quantum dots (QDs) by element directed, inexpensive, straight forward wet chemical method which is free from any surfactant or template. Copper selenide QDs have been synthesized by elemental copper and selenium in the presence of ethylene glycol, hydrazine hydrate, and a defined amount of water at 70 °C within 8 h. The product is in strong quantum confinement regime, phase analysis, purity and morphology of the product has been well studied by X-ray diffraction (XRD), UV–Visible spectroscopy (UV–Vis), Photo-luminescent spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), High resolution transmission electron microscopy (HRTEM), and by Atomic force microscopy (AFM) techniques. The absorption and photoluminescence studies display large “blue shift”. TEM and HRTEM analyses revealed that the QDs diameters are in the range 2–5 nm. Due to the quantum confinement effect copper selenide QDs could be potential building blocks to construct functional devices and solar cell. The possible mechanism is also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Li YD, Wang JW, Deng ZX, Wu YY, Sun XM (2001) J Am Chem Soc 123:9904

  2. 2.

    Li YD, Ding Y, Qian YT, Yang L (1998) Inorg Chem 37:2844

  3. 3.

    Wang WZ, Geng Y, Yan P, Liu FY (1999) Inorg Chem Commun 2:83

  4. 4.

    Li Y, Ding Y, Wang Z (1999) Adv Mater 11:847

  5. 5.

    Kaito C, Nonaka A, Kimura S, Suzuki N, Saito Y (1998) J Cryst Growth 186:386

  6. 6.

    Bawendi MG, Carroll PJ, Wilson WL, Brus LE (1992) J Chem Phys 96:946

  7. 7.

    Zhang BP, Yasuda T, Segawa Y, Yaguchi H, Onabe K (1997) Appl Phys Lett 70:2413

  8. 8.

    Wang W, Geng Y, Yan P, Liu F, Xie Y (1999) J Am Chem Soc 121:4062

  9. 9.

    Chivers T (1996) Dalton Trans 1185

  10. 10.

    Ritter JJ, Pichai M (1995) Inorg Chem 34:4278

  11. 11.

    Mongellaz F, Fillot A (1994) Proc SPIE Int Soc Opt Eng 156:22

  12. 12.

    Lakshmikumar ST, Rastogi AC (1994) Sol Energy Mater Sol Cells 32:7

  13. 13.

    Zhu JJ, Palchik O, Chen SG, Gedanken A (2000) J Phys Chem B 104:7344

  14. 14.

    Xie Y, Zheng XW, Jiang XC, Lu J, Zhu LY (2002) Inorg Chem 41:387

  15. 15.

    Xu S, Wang H, Zhu JJ, Chen HY (2002) J Cryst Growth 234:263

  16. 16.

    Kemmler M, Lazell M, O’Brien P, Otway DJ, Park JH (2002) J Mater Sci Mater Electron 13:531

  17. 17.

    Dhanam M, Manoj PK, Prabhu Rajeev R (2005) J Cryst Growth 280:425

  18. 18.

    Zulkarnain Z, Saravanan N, Loo TC (2005) Mater Lett 59:1391

  19. 19.

    Shafizade KB, Ivanova IV, Kaizinets MM (1978) Thin Solid Films 55:211

  20. 20.

    Haram SK, Santhanam KSV, Numann-Spallar M, Levy-Clement C (1992) Mater Res Soc Bull 27:1185

  21. 21.

    Gracia VM, Nair PK, Nair MTS (1999) J Cryst Growth 203:113

  22. 22.

    Lakshmi M, Bindu K, Bini S, Vijayakumar KP, Sudha Kartha C (2000) Thin Solid Films 370:89

  23. 23.

    Lakshmi M, Bindu K, Bini S, Vijayakumar KP, Sudha Kartha C (2001) Thin Solid Films 386:127

  24. 24.

    Heyding RD, Murray RM (1976) Can J Chem 54:841

  25. 25.

    Heyding RD (1966) Can J Chem 44:1233

  26. 26.

    Schafer A, Kouwitz M, Ahlrichs R (1996) J Chem Phys 104:7113

  27. 27.

    Zhang WX, Zhang XM, Zhang L, Wu JX, Hui ZH (2000) Inorg Chem 39:1838

  28. 28.

    Wang WZ, Yan P, Liu FY, Xie Y, Geng Y (1998) J Mater Chem 8:2321

  29. 29.

    Han ZH, Li YP, Zhao HQ, Yu SH, Yin XL (2000) Mater Lett 44:366

  30. 30.

    Su HL, Xie Y, Qiao ZP, Qian YT (2000) Mater Res Bull 35:1129

  31. 31.

    Hermann AM, Fabick L (1983) J Cryst Growth 61:658

  32. 32.

    Vohl P, Perkins DM, Ellis SG, Addiss RR, Huis W (1967) IEEE Trans Electron Dev 14:26

  33. 33.

    Okimura H, Matsumae T, Makabe R (1980) Thin Solid Films 71:53

  34. 34.

    Tadashi S, Matsubara S, Minagawa S (1977) Jpn J Appl Phys 16:807

  35. 35.

    Sharma KC, Sharma RP, Garg JC (1992) J Phys D Appl Phys 25:1019

  36. 36.

    Padam GK (1987) Thin Solid Films 150:L89

  37. 37.

    Abdullaev GB, Aliyarova ZA, Asadov GA (1996) Phys Status Solidi 21:461

  38. 38.

    Sharma KC, Sharma RP, Garg JC (1990) Indian J Pure Appl Phys 28:590

  39. 39.

    Kumar P, Singh K (2009) Cryst Growth Des 9:3089

  40. 40.

    Kumar P, Singh K, Srivastava ON (2010) J Cryst Growth 312:2804

  41. 41.

    Kumar P, Singh K (2010) Curr Nanosci 6:89

  42. 42.

    Kumar P, Singh K (2010) Curr Nanosci 6:402

  43. 43.

    Peng Q, Dong YJ, Li YD (2003) Inorg Chem 42:2174

  44. 44.

    Liang HW, Liu S, Wu QS, Yu SH (2009) Inorg Chem 48:4927

  45. 45.

    Kumar P, Singh K (2009) J Opto Biomed Mater 1:59

  46. 46.

    Li FB, Li XZ (2002) Appl Catal A 228:15

  47. 47.

    Yu JG, Su YR, Cheng B (2007) Adv Funct Mater 17:1984

  48. 48.

    Yu JG, Li C, Liu SG (2008) J Colloid Interface Sci 326:433

  49. 49.

    Kumar P, Singh K (2010) J Nanopart Res. doi:10.1007/s11051-010-9914-5

  50. 50.

    Dong Y, Peng Q, Li Y (2004) Inorg Chem Commun 7:370

Download references

Acknowledgments

Pushpendra Kumar is grateful for support from the University Grant Commission New Delhi for providing financial assistance under Rajeev Gandhi National Fellowship Scheme as SRF (RGNFS-SRF). We are also thankful to Prof. O.N. Srivastva, Dr. Anchal Srivastva, Mr. Upendra Kumar Parashar (Dept. of Physics BHU), Prof. Dhananjay Pandey (School of Materials Science, IT-BHU), Dr. Avinash Chand Pandey, Mr. Vyom Parashar, and Mr. Raghvendra S. Yadav (N.A.C. University of Allahabad) for providing constant support and help in various ways.

Author information

Correspondence to Kedar Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 246 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, P., Singh, K. Synthesis, characterizations, and optical properties of copper selenide quantum dots. Struct Chem 22, 103–110 (2011). https://doi.org/10.1007/s11224-010-9698-3

Download citation

Keywords

  • Atomic force microscopy
  • Blue shift
  • FTIR spectroscopy
  • Semiconductor nanoparticles
  • Transmission electron microscopy
  • UV–Vis spectroscopy