Structural Chemistry

, Volume 21, Issue 4, pp 681–690 | Cite as

The proton transfer process observed in the structure analysis and DFT calculations of (E)-2-ethoxy-6-[(2-methoxyphenylimino)methyl]phenol

  • Hande Petek
  • Çiğdem Albayrak
  • Mustafa Odabaşoğlu
  • İsmet Şenel
  • Orhan Büyükgüngör
Original Research

Abstract

The crystal and molecular structures of an o-hydroxy Schiff base derivative, (E)-2-ethoxy-6-[(2-methoxyphenylimino)methyl]phenol, have been determined by single crystal X-ray diffraction analyses at 296 and 100 K. The results from temperature-dependent structural analysis regarding the tautomeric equilibrium of the compound were interpreted with the aid of quantum chemical calculations. To clarify the tautomerization process and its effects on the molecular geometry, the gas-phase geometry optimizations of two possible tautomers of the title molecule, its OH and NH form, were achieved using DFT calculations with B3LYP method by means of 6-31 + G(d,p) basis set. In order to describe the potential barrier belonging to the phenolic proton transfer, nonadiabatic Potential Energy Surface (PES) scan was performed based on the optimized geometry of the OH tautomeric form by varying the redundant internal coordinate, O–H bond distance. The Harmonic Oscillator Model of Aromaticity (HOMA) indices were calculated in every step of the scan process so as to express the deformation in the aromaticities of principal molecular moieties of the compound. The results show that there is a dynamic equilibrium between the aromaticity level of phenol and chelate ring and furthermore π-electron coupling affecting overall molecule of the title compound. Charge transfer from phenol ring to pseudo-aromatic chelate ring increases with increasing temperature, whereas π-electron transfer from chelate ring to anisole ring is decreased as temperature increases. The most strength intramolecular H-bonds are observed for conformers close to transition state.

Keywords

Schiff base Tautomerism SUMP instruction HOMA PES scan Crystal structure 

Supplementary material

11224_2010_9598_MOESM1_ESM.doc (116 kb)
DOC 116 kb

References

  1. 1.
    Canali L, Sherrington DC (1999) Chem Soc Rev 28:85–93CrossRefGoogle Scholar
  2. 2.
    Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283–315CrossRefGoogle Scholar
  3. 3.
    Rousso I, Friedman N, Sheves M, Ottolenghi M (1995) Biochemistry 34:12059–12065CrossRefGoogle Scholar
  4. 4.
    Lanyi JK (1993) Biochim Biophys Acta 1183:241–261CrossRefGoogle Scholar
  5. 5.
    Das K, Sarkar N, Ghosh AK, Majumdar D, Nath DN, Bhattacharyya K (1994) J Phys Chem 98:9126–9132CrossRefGoogle Scholar
  6. 6.
    Fores M, Duran M, Sola M, Orozco M, Luque FJ (1999) J Phys Chem A 103:4525–4532CrossRefGoogle Scholar
  7. 7.
    Acuna AU, Amat Guerri F, Costela A, Douhal A, Figuera JM, Florido F, Sastre R (1991) Chem Phys Lett 187:98–102CrossRefGoogle Scholar
  8. 8.
    Nishiya T, Yamauchi S, Hirota N, Baba M, Hanazaki I (1986) J Phys Chem 90:5730–5735CrossRefGoogle Scholar
  9. 9.
    Wojciechowski G, Ratajczak-Sitarz M, Katrusiak A, Schilf W, Przybylski P, Brzezinski B (2003) J Mol Struct 650:191–199CrossRefGoogle Scholar
  10. 10.
    Mondal B, Lahiri GK, Naumov P, Ng SW (2002) J Mol Struct 613:131–135CrossRefGoogle Scholar
  11. 11.
    Petek H, Albayrak C, Agar E, Kalkan H (2006) Acta Crystallogr E62:o3685–o3687Google Scholar
  12. 12.
    Petek H, Albayrak C, Ocak-Iskeleli N, Agar E, Senel I (2007) J Chem Crystallogr 37:285–290CrossRefGoogle Scholar
  13. 13.
    Steiner T (1998) J Phys Chem A 102:7041–7052CrossRefGoogle Scholar
  14. 14.
    Ogawa K, Harada J (2003) J Mol Struct 647:211–216CrossRefGoogle Scholar
  15. 15.
    Nazır H, Yıldız M, Yılmaz H, Tahir MN, Ülkü D (2000) J Mol Struct 524:241–250CrossRefGoogle Scholar
  16. 16.
    Karabiyik H, Guzel B, Aygun M, Boga G, Buyukgungor O (2007) Acta Crystallogr C63:o215–o218Google Scholar
  17. 17.
    Ligtenbarg AGJ, Hage R, Meetsma A, Feringa BL (1999) J Chem Soc Perkin Trans 2:807–812Google Scholar
  18. 18.
    Karabiyik H, Ocak-Iskeleli N, Petek H, Albayrak C, Agar E (2008) J Mol Struct 873:130–136CrossRefGoogle Scholar
  19. 19.
    Karabiyik H, Petek H, Iskeleli NO, Albayrak C (2009) Struct Chem 20:1055–1065CrossRefGoogle Scholar
  20. 20.
    Stoe & Cie (2002) X-AREA (Version 1.18) and X-RED32 (Version 1.04), Darmstadt, GermanyGoogle Scholar
  21. 21.
    Sheldrick GM (2008) Acta Crystallogr A64:112–122Google Scholar
  22. 22.
    Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc., WallingfordGoogle Scholar
  24. 24.
    Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78Google Scholar
  25. 25.
    Cossi M, Barone V, Robb MA (1999) J Chem Phys 111:5295–5302CrossRefGoogle Scholar
  26. 26.
    Salman SR, Saleh NAI (1997) Spectr Lett 30:1289–1300CrossRefGoogle Scholar
  27. 27.
    Aton B, Doukas AG, Narva D, Callender RH, Dinur U, Honig B (1980) Biophys J 29:79–94CrossRefGoogle Scholar
  28. 28.
    Farrugia LJ (1997) J Appl Cryst 30:565CrossRefGoogle Scholar
  29. 29.
    Yuce S, Ozek A, Albayrak C, Odabasoglu M, Buyukgungor O (2004) Acta Crystallogr E60:o718–o719Google Scholar
  30. 30.
    Temel E, Albayrak C, Odabasoglu M, Buyukgungor O (2007) Acta Crystallogr E63:o374–o376Google Scholar
  31. 31.
    Şahin O, Büyükgüngör O, Albayrak Ç, Odabaşoğlu M (2005) Acta Crystallogr E61:o1288–o1290Google Scholar
  32. 32.
    Şahin O, Büyükgüngör O, Albayrak Ç, Odabaşoğlu M (2005) Acta Crystallogr E61:o1579–o1581Google Scholar
  33. 33.
    Şahin O, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O (2005) Acta Crystallogr E61:o2859–o2861Google Scholar
  34. 34.
    Petek H, Albayrak C, Odabasoglu M, Senel I, Buyukgungor O (2008) J Chem Crystallogr 38:901–905CrossRefGoogle Scholar
  35. 35.
    Matito E, Duran M, Solà M (2005) J Chem Phys 122:014109-1/8Google Scholar
  36. 36.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  37. 37.
    Filarowski A, Koll A, Glowiak T (2002) J Chem Soc Perkin Trans 2:835–842Google Scholar
  38. 38.
    Allen FH, Watson DG, Brammer L, Orpen AG, Taylor R (2004) In: Prince E (ed) International tables for crystallography (vol. C): mathematical, physical and chemical tables, 3rd edn. Kluwer, Dordrecht, pp 790–811Google Scholar
  39. 39.
    Filarowski A, Kochel A, Kluba M, Kamounah FS (2008) J Phys Org Chem 21:939–944CrossRefGoogle Scholar
  40. 40.
    Filarowski A (2005) J Phys Org Chem 18:686–698CrossRefGoogle Scholar
  41. 41.
    Filarowski A, Kochel A, Cieslik K, Koll A (2005) J Phys Org Chem 18:986–993CrossRefGoogle Scholar
  42. 42.
    Musin RN, Mariam YH (2006) J Phys Org Chem 19:425–444CrossRefGoogle Scholar
  43. 43.
    Leffler JE (1953) Science 117:340–341CrossRefGoogle Scholar
  44. 44.
    Hammond GS (1955) J Am Chem Soc 77:334–338CrossRefGoogle Scholar
  45. 45.
    Filarowski A, Majerz I (2008) J Phys Chem A 112:3119–3126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hande Petek
    • 1
  • Çiğdem Albayrak
    • 2
  • Mustafa Odabaşoğlu
    • 3
  • İsmet Şenel
    • 1
  • Orhan Büyükgüngör
    • 1
  1. 1.Department of PhysicsOndokuz Mayıs UniversitySamsunTurkey
  2. 2.Faculty of EducationSinop UniversitySinopTurkey
  3. 3.Denizli Higher Vocational School, Chemistry ProgramPamukkale UniversityDenizliTurkey

Personalised recommendations