Advertisement

Structural Chemistry

, Volume 21, Issue 3, pp 573–581 | Cite as

Exploring the structural and electronic properties of nitrogen-containing exohydrogenated carbon nanotubes: a quantum chemistry study

  • M. Leonor Contreras
  • Diego Avila
  • José Alvarez
  • Roberto Rozas
Original Research

Abstract

Saturated nanotubes consisting of 2–10 and 20 layers of cyclic units of six-membered rings, each one having a pyrimidine-like framework (i.e., –C–C–C–N–C–N–), were studied by quantum chemistry methods using Density Functional Theory (DFT) at the B3LYP/6-31G* level of theory. Four different nanotube (NT) configurations were theoretically studied in this work. They were formed by covalently arranging each layer over the other, with uniform relative rotations of 0°, 60°, 120°, and 180° with respect to each of the layers. Different structures can be created by modulating the relative rotation as layers are added to the main nanostructure. NTs with a relative rotation of 60° showed both greater stabilities and highest potential for catalytic activity. All of them showed band gaps of around 0.2 eV. Charges and other properties can be controlled by appropriate layer arrangement. The studied families of NTs have a very small diameter and could find potential applications in chemistry, physics, and medicine.

Keywords

Exohydrogenated pyrimidine nanotubes Electronic properties Nitrogen-containing nanotubes DFT nanotube band gaps Formation energies 

Notes

Acknowledgments

This study was partially supported by the Direction of Scientific and Technological Research DICYT-USACH project Nr 060742CF and by the SDT-USACH project Nr CIA 2981. In addition, the central cluster of the Faculty of Chemistry and Biology and the VRID of the University of Santiago de Chile are acknowledged for allocating computational resources.

Supplementary material

11224_2010_9587_MOESM1_ESM.doc (312 kb)
(DOC 313 kb)

References

  1. 1.
    Ganji MD (2008) Nanotechnology 19:0257091CrossRefGoogle Scholar
  2. 2.
    Tománek D (2008) In: Jorio A, Dresselhaus MS, Dresselhaus G (eds) Advanced topics in the synthesis, structure, properties and applications topics. Appl Phys, vol 111. Springer, Berlin, 1 ppGoogle Scholar
  3. 3.
    Xiong X, Ouyang J, Baeyens WRG, Delanghe JR, Shen X, Yang Y (2006) Electrophoresis 27:3243CrossRefGoogle Scholar
  4. 4.
    Shenkenberg DL (2008) Biophotonics Int 34Google Scholar
  5. 5.
    Alam KM, Ray AK (2007) Nanotechnology 18:4957061CrossRefGoogle Scholar
  6. 6.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204CrossRefGoogle Scholar
  7. 7.
    Hamada N, Sawada S, Oshiyama A (1992) Phys Rev Lett 68:1579CrossRefGoogle Scholar
  8. 8.
    Charlier JC (2002) Acc Chem Res 35:1063CrossRefGoogle Scholar
  9. 9.
    Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Ajayan PM, Blau W, Tekleab D, Rühle M, Carroll DL (2001) Nano Lett 1:457CrossRefGoogle Scholar
  10. 10.
    Zhao M, Xia Y, Lewis JP, Zhang RJ (2003) Appl Phys 94:2398CrossRefGoogle Scholar
  11. 11.
    Terrones M (2007) Acta Microsc 16:33Google Scholar
  12. 12.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760CrossRefGoogle Scholar
  13. 13.
    Rocha AR, Rossi M, Fazzio A, Silva AJR (2008) Phys Rev Lett 100:1768031Google Scholar
  14. 14.
    Stojkovic D, Zhang P, Crespi VH (2001) Phys Rev Lett 87:1255021CrossRefGoogle Scholar
  15. 15.
    Stojkovic D, Lammert PE, Crespi VH (2007) Phys Rev Lett 99:0268021CrossRefGoogle Scholar
  16. 16.
    Yang FH, Lachawiec AJ Jr, Yang RT (2006) J Phys Chem B 110:6236CrossRefGoogle Scholar
  17. 17.
    Kaczmarek A, Dinadayalane TC, Lukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211CrossRefGoogle Scholar
  18. 18.
    Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376CrossRefGoogle Scholar
  19. 19.
    Yildirim T, Gülseren O, Ciraci S (2001) Phys Rev B 64:075404CrossRefGoogle Scholar
  20. 20.
    Gülseren O, Yildirim T, Ciraci S (2002) Phys Rev B 66:1214011CrossRefGoogle Scholar
  21. 21.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610CrossRefGoogle Scholar
  22. 22.
    Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401CrossRefGoogle Scholar
  23. 23.
    Fuhrer MS, Adam S (2009) Nature 458:38Google Scholar
  24. 24.
    Lee SM, An KH, Lee YH, Seifert G, Frauenheim TA (2001) J Am Chem Soc 123:5059CrossRefGoogle Scholar
  25. 25.
    Froudakis GE (2002) J Phys Condens Matter 14:R453CrossRefGoogle Scholar
  26. 26.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377CrossRefGoogle Scholar
  27. 27.
    Rodriguez NM, Baker RTK (1997) US Patent Nr 5,653,951Google Scholar
  28. 28.
    Henley D, Imholt TJ (2008) US Patent Nr 7,468,097Google Scholar
  29. 29.
    Bilic A, Gale JD (2008) J Phys Chem 112:12568Google Scholar
  30. 30.
    Yang SH, Shin WH, Kang JK (2008) Small 4:437CrossRefGoogle Scholar
  31. 31.
    Balbo Block MA, Kaiser C, Khan A, Hecht S (2005) Top Curr Chem 245:89Google Scholar
  32. 32.
    Fenniri H (2004) US Patent Nr 6,696,565Google Scholar
  33. 33.
    Johnson RS, Yamazaki T, Kovalenko A, Fenniri H (2007) J Am Chem Soc 129:5735CrossRefGoogle Scholar
  34. 34.
    HyperChem release 7.0. Hypercube Inc, 1115 NW 4th Street, Gainesville, FL 32601, USAGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Revision D01. Gaussian Inc, WallingfordGoogle Scholar
  36. 36.
    Becke ADJ (1993) Chem Phys 98:5648Google Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  38. 38.
    Jaguar version 7.5 (2008) Schrödinger, New YorkGoogle Scholar
  39. 39.
    Wang JL, Lushington GH, Mezey PG (2006) J Chem Inf Model 46:1965CrossRefGoogle Scholar
  40. 40.
    Wang JL, Mezey PG (2006) J Chem Inf Model 46:801CrossRefGoogle Scholar
  41. 41.
    Kang HS, Jeong S (2004) Phys Rev B 70:2334111CrossRefGoogle Scholar
  42. 42.
    Felice RD, Calzolari A, Varsano D, Rubio A (2005) Lect Notes Phys 680:77CrossRefGoogle Scholar
  43. 43.
    Dreizler RM, Gross EKU (1990) Density functional theory, an approach to the quantum many body problem. Springer, BerlinGoogle Scholar
  44. 44.
    Van de Walle CG (2008) J Phys Condens Matter 20:064230CrossRefGoogle Scholar
  45. 45.
    Wang N, Tang ZK, Li GD, Chen JS (2000) Nature 408:50CrossRefGoogle Scholar
  46. 46.
    Contreras ML, Benítez E, Alvarez J, Rozas R (2009) Algorithms 2:108. http://wwwmdpicom/1999-4893/2/1/108
  47. 47.
    Tang ZK, Zhai JP, Tong YY, Hu XJ, Saito R, Feng YJ, Sheng P (2008) Phys Rev Lett 101:047402CrossRefGoogle Scholar
  48. 48.
    Trasobares S, Stéphan O, Colliex C, Hsu WK, Kroto HW, Walton DRM (2002) J Chem Phys 116:8966CrossRefGoogle Scholar
  49. 49.
    Zhong Z, Lee GI, Mo CB, Hong SH, Kang JK (2007) Chem Mater 19:2918CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Leonor Contreras
    • 1
  • Diego Avila
    • 2
  • José Alvarez
    • 2
  • Roberto Rozas
    • 1
  1. 1.Department of Environmental Sciences, Faculty of Chemistry and BiologyUniversity of Santiago de Chile, UsachSantiago-33Chile
  2. 2.Department of Information Technology, Faculty of EngineeringUniversity of Santiago de Chile, UsachSantiago-33Chile

Personalised recommendations