Structural Chemistry

, Volume 21, Issue 3, pp 495–501 | Cite as

Selected AChE reactivators in different crystalline environment: salts and enzyme

  • Agnieszka Skórska-StaniaEmail author
  • Magdalena Śliwa
  • Kamil Musilek
  • Kamil Kuca
  • Josef Jampilek
  • Robert Musiol
  • Barbara J. Oleksyn
  • Jiri Dohnal
Original Research


The investigation of relationships between the molecular structure of the compounds capable to reactivate acetylcholinesterase (AChE) inhibited by organophosphorus toxins, such as nerve agents and pesticides, is an important step toward synthesis of more efficient antidota. In the present article, we describe the crystal structures of two new AChE reactivators, which are bromides of (E)-1,4-bis(4-hydroxyiminomethylpyridinium)-but-2-ene (K075) and of 4,4′-bis(hydroxyiminomethyl)-1,1′-(1,4-phenylenedimethyl)-bispyridinium (K114). Their molecular geometry and intermolecular interactions in the crystalline state are compared to those in the crystal structures of the well-known AChE reactivators, obidoxime, and TMB-4. Inspection of hydrogen bonds and other short intermolecular contacts in the crystalline AChE–obidoxime complex revealed their similarity to those observed in the crystal structures of K075 and K114.


AChE reactivators Oximes Hydrogen bonds Crystalline state 



The authors express their appreciation to Mrs. M. Hrabinova for her technical assistance. This study was supported by Grant Agency of Ministry of Education, Youth, and Sports (Czech Republic)—grants no. ME865 and ME09086.


  1. 1.
    Marrs TC (1993) Pharmacol Ther 58:51CrossRefGoogle Scholar
  2. 2.
    Bajgar J (2004) Adv Clin Chem 38:151CrossRefGoogle Scholar
  3. 3.
    Newmark J (2007) Neurologist 13:20CrossRefGoogle Scholar
  4. 4.
    Saxena A, Sun W, Luo C, Myers TM, Koplovitz I, Lenz DE, Doctor BP (2006) J Mol Neurosci 30:145CrossRefGoogle Scholar
  5. 5.
    Hagedorn I, Gündel WH, Schoene K (1969) Arzneimittelforschung 19:603Google Scholar
  6. 6.
    Lüttringhaus A, Hagedorn I (1964) Arzneimittelforschung 14:1Google Scholar
  7. 7.
    Poziomek EJ, Hackley BE, Steinberg GM (1958) J Org Chem 23:714CrossRefGoogle Scholar
  8. 8.
    Luo C, Tong M, Maxwell DM, Saxena A (2008) Chem Biol Interact 175:261CrossRefGoogle Scholar
  9. 9.
    Ekstrom F, Akfur C, Tunemalm AK, Lundberg S (2006) Biochemistry 45:74CrossRefGoogle Scholar
  10. 10.
    Lundy PM, Raveh L, Amitai G (2006) Toxicol Rev 25:231CrossRefGoogle Scholar
  11. 11.
    Bartosova L, Kuca K, Kunesova G, Jun D (2006) Neurotox Res 9:291CrossRefGoogle Scholar
  12. 12.
    Kuca K, Cabal J, Musilek K, Jun D, Bajgar J (2005) J Appl Toxicol 25:491CrossRefGoogle Scholar
  13. 13.
    Musilek K, Kuca K, Jun D, Dohnal V, Dolezal M (2006) Bioorg Med Chem Lett 16:622CrossRefGoogle Scholar
  14. 14.
    Musilek K, Kuca K, Jun D, Dohnal V, Dolezal MJ (2005) J Enzym Inhib Med Chem 20:409CrossRefGoogle Scholar
  15. 15.
    Sheldrick GM (1998) SHELX97 [includes SHELXS97, SHELXL97, CIFTAB]—programs for crystal structure analysis (Release 97-2). Institüt für Anorganische Chemie der Universität, Göttingen, GermanyGoogle Scholar
  16. 16.
    Nonius (1997) COLLECT. Nonius BV, Delft, The NetherlandsGoogle Scholar
  17. 17.
    Otwinowski Z, Minor W (1997) Methods in enzymology. In: Carter CW Jr, Sweet RM (eds), Macromolecular crystallography, part A, vol 276. Academic Press, New York, p 307Google Scholar
  18. 18.
    Farrugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  19. 19.
    van Havere W, Lenstra ATH, Geise HJ, van den Berg GR, Benschop HP (1982) Acta Crystallogr B 38:1635CrossRefGoogle Scholar
  20. 20.
    Bustamante CD, Staples RJ (1999) Zeitschrift für Kristallographie 214:141Google Scholar
  21. 21.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466CrossRefGoogle Scholar
  22. 22.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B 46:256CrossRefGoogle Scholar
  23. 23.
    Ekstrom F, Pang YP, Boman M, Artursson E, Akfur C, Borjegren S (2006) Biochem Pharmacol 72:597CrossRefGoogle Scholar
  24. 24.
    Delano WL (2002) The Pymol molecular graphics system.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Agnieszka Skórska-Stania
    • 1
    Email author
  • Magdalena Śliwa
    • 1
  • Kamil Musilek
    • 2
    • 3
  • Kamil Kuca
    • 3
    • 4
  • Josef Jampilek
    • 5
    • 6
  • Robert Musiol
    • 7
  • Barbara J. Oleksyn
    • 1
  • Jiri Dohnal
    • 5
    • 6
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Military Health Sciences, Department of ToxicologyUniversity of DefenceHradec KraloveCzech Republic
  3. 3.Faculty of Science, Department of ChemistryUniversity of Jan Evangelista PurkyneUsti nad LabemCzech Republic
  4. 4.Faculty of Military Health Sciences, Center of Advanced StudiesUniversity of DefenceHradec KraloveCzech Republic
  5. 5.Zentiva a.s.Prague 10Czech Republic
  6. 6.Faculty of Pharmacy, Department of Chemical DrugsUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  7. 7.Institute of ChemistryUniversity of SilesiaKatowicePoland

Personalised recommendations