Structural Chemistry

, Volume 21, Issue 1, pp 245–254 | Cite as

X-ray crystal structures of halogen containing nucleobase derivatives in unsolvated and DMSO solvated forms

Original Research

Abstract

A series of halogenated nucleobase derivatives 14 is reported to yield solvent-free (2) and DMSO solvated crystals (1, 3, 4) on the crystallization from DMSO with one of them (4) containing an additional molecule of water. The molecular and crystal structures are described and comparatively discussed with reference to previous results on related compounds. The molecule of 1 is planar, molecules of 2 and 3 show syn alignment with reference to the heterocyclic ring and common C2′-endo conformation of the ribose residue, while 4 is also syn aligned but C4′-exo in the sugar conformation. The packing structures reveal typical aggregations created via networks of hydrogen bonds. These involve conventional N–H···N, N–H···O and O–H···O interactions between nucleobase and ribose units as well as solvent molecules, additionally supported by weak C–H···O contacts but excluding the participation of halogen···halogen interactions as well as halogen···heteroatom contacts in the supramolecular structure formation.

Keywords

Nucleobase derivatives Halogen compounds DMSO solvates X-ray analysis Hydrogen bonding 

References

  1. 1.
    Voet D, Voet JG (2004) Biochemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Blackburne GM, Gait MJ, Loakes D (2006) Nucleic acids in chemistry and biology, 3rd edn. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  3. 3.
    Bloomfield VA, Crothers DM, Tinoco J (2000) Nucleic acids—structures, properties and functions. University Science Books, SausalitoGoogle Scholar
  4. 4.
    Wagenknecht HA (2009) Angew Chem 121:2878CrossRefGoogle Scholar
  5. 5.
    Wagenknecht HA (2009) Angew Chem Int Ed 48:2838CrossRefGoogle Scholar
  6. 6.
    Park SH, Pistol C, Alm SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (2006) Angew Chem 118:749CrossRefGoogle Scholar
  7. 7.
    Park SH, Pistol C, Alm SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (2006) Angew Chem Int Ed 45:735CrossRefGoogle Scholar
  8. 8.
    Wengel J (2004) Org Biomol Chem 2:277CrossRefGoogle Scholar
  9. 9.
    Seeman NC (2003) Nature 421:427CrossRefGoogle Scholar
  10. 10.
    Printz M, Richert C (2009) Chem Eur J 15:3390CrossRefGoogle Scholar
  11. 11.
    Lindegaard D, Madsen AS, Astakhova IV, Malakhov AD, Babu BR, Korshun VA, Wengel J (2008) Bioorg Med Chem 16:94CrossRefGoogle Scholar
  12. 12.
    Kalek M, Madsen AS, Wengel J (2007) J Am Chem Soc 129:9392CrossRefGoogle Scholar
  13. 13.
    Ogasawara S, Maeda M (2008) Angew Chem 120:8971CrossRefGoogle Scholar
  14. 14.
    Ogasawara S, Maeda M (2008) Angew Chem Int Ed 47:8839CrossRefGoogle Scholar
  15. 15.
    Feldkamp U, Niemeyer CM (2006) Angew Chem 118:1888CrossRefGoogle Scholar
  16. 16.
    Feldkamp U, Niemeyer CM (2006) Angew Chem Int Ed 45:1856CrossRefGoogle Scholar
  17. 17.
    Sessler JL, Lawrence CM, Jayawickramarajah J (2007) Chem Soc Rev 36:314CrossRefGoogle Scholar
  18. 18.
    Sivakova S, Rowan SJ (2005) Chem Soc Rev 34:9CrossRefGoogle Scholar
  19. 19.
    Takahashi S, Kuroyama Y, Sonogashira K, Hagihara N (1980) Synthesis 627Google Scholar
  20. 20.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457CrossRefGoogle Scholar
  21. 21.
    Milstein D, Stille JK (1978) J Am Chem Soc 100:3636CrossRefGoogle Scholar
  22. 22.
    Hudson RHE, Dambenieks AK (2006) Heterocycles 68:1325CrossRefGoogle Scholar
  23. 23.
    Firth AG, Fairlamb IJS, Darley K, Baumann CG (2006) Tetrahedron Lett 47:3529CrossRefGoogle Scholar
  24. 24.
    Western EC, Daft JR, Johnson EM, Gannett PM, Shaughnessy KH (2003) J Org Chem 68:6767CrossRefGoogle Scholar
  25. 25.
    Collier A, Wagner GK (2008) Chem Commun 178Google Scholar
  26. 26.
    Sessler JL, Wang B, Harriman A (1995) J Am Chem Soc 117:704CrossRefGoogle Scholar
  27. 27.
    Greco NJ, Tor Y (2007) Tetrahedron 63:3515CrossRefGoogle Scholar
  28. 28.
    Fischer E, Reese L (1883) Liebigs Ann Chem 221:336CrossRefGoogle Scholar
  29. 29.
    Bruhns G (1890) Ber Dtsch Chem Ges 23:225CrossRefGoogle Scholar
  30. 30.
    Johnson TB, Johns CO (1906) J Biol Chem 1:305Google Scholar
  31. 31.
    Bugg CE, Thewalt AA (1969) Biochem Biophys Res Commun 37:623CrossRefGoogle Scholar
  32. 32.
    Tavale SS, Sobell HM (1970) J Mol Biol 48:109CrossRefGoogle Scholar
  33. 33.
    Kato M, Takenaka A, Sasada Y (1979) Bull Chem Soc Jpn 52:49CrossRefGoogle Scholar
  34. 34.
    Okabe N, Tamaki K, Suga T (1995) Acta Crystallogr C51:2696Google Scholar
  35. 35.
    Csöregh I, Czugler M, Weber E, Sjögren A, Cserzö M (1986) J Chem Soc Perkin Trans 2:507Google Scholar
  36. 36.
    Metrangolo P, Resnati G (2004) In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, pp 628–635Google Scholar
  37. 37.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem 120:6206CrossRefGoogle Scholar
  38. 38.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114CrossRefGoogle Scholar
  39. 39.
    Ikehara M, Kaneko M (1970) Tetrahedron 26:4251CrossRefGoogle Scholar
  40. 40.
    Niles JC, Wishnok JS, Tannenbaum SR (2000) Chem Res Toxicol 13:390CrossRefGoogle Scholar
  41. 41.
    Sheldrick GM (2004) SADABS: program for empirical absorption corrections. University of Göttingen, GermanyGoogle Scholar
  42. 42.
    Bruker (2004) SAINT version 6.45a. Bruker AXS Inc., Madison, WIGoogle Scholar
  43. 43.
    Sheldrick GM (2008) Acta Crystallogr A64:112Google Scholar
  44. 44.
    Spek AL (2009) Acta Crystallogr D65:148Google Scholar
  45. 45.
    Sheldrick GM (1999) SHELXTL version 5.1: program for the solution and refinement of crystal structures. Bruker AXS Inc., Madison, WIGoogle Scholar
  46. 46.
    Nangia A, Desiraju GR (1998) In: Weber E (ed) Design of organic solids. Topics in current chemistry, vol 198. Springer, Berlin-Heidelberg, pp 57–95CrossRefGoogle Scholar
  47. 47.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordGoogle Scholar
  48. 48.
    Mazik M, Bläser D, Boese R (2001) Tetrahedron 57:5791CrossRefGoogle Scholar
  49. 49.
    Dance I (2004) In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, pp 1076–1092Google Scholar
  50. 50.
    Reddy CM, Kirchner MT, Gundakaram RC, Padmanabhan KA, Desiraju GR (2006) Chem Eur J 12:2222CrossRefGoogle Scholar
  51. 51.
    Tollin P, Low JN, Howie RA (1988) Acta Crystallogr C44:185Google Scholar
  52. 52.
    Mande SS, Lalitha HN, Ramakumar S, Viswamitra MA (1992) Nucleosides Nucleotides 11:1089CrossRefGoogle Scholar
  53. 53.
    Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) Chem Eur J 12:8952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut für Organische ChemieTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations