Structural Chemistry

, Volume 21, Issue 2, pp 391–404 | Cite as

Adsorption of RDX and TATP on IRMOF-1: an ab initio study

Original Paper

Abstract

The adsorption of 1,3,5-trinitro-s-triazine (RDX) and triacetone triperoxide (TATP) on representative fragments of metal organic framework (IRMOF-1) was studied at the B3LYP/6-31G(d) level of theory. For examined adsorbates several possible adsorption positions toward the IRMOF-1 fragments were found. The adsorption strength of the adsorbate on IRMOF-1 is largely affected by the geometry of the active site of IRMOF-1 which controls the orientation of the target molecule with respect to the IRMOF-1 fragment. The calculations show that the adsorption on these fragments occurs due to the formation of hydrogen bonds between the molecular C–H groups and the oxygen atoms of IRMOF-1. The RDX and TATP molecules are the most strongly adsorbed on the linker fragment of IRMOF-1. This type of adsorption results in the polarization of RDX and TATP on the IRMOF-1 fragments. The interaction energy of two most stable RDX-, and TATP-IRMOF-1 adsorption systems are −9.8 and −12.8 kcal/mol, respectively. It can be concluded that the 1,4-benzenedicarboxylate site of IRMOF-1 shows the stronger molecular adsorption of RDX and TATP than the site containing [Zn4O(CO2)6] and also it is characterized by higher reactivity than the other considered sites. The binding of studied explosive molecules to IRMOF-1 consists of interplay between attractive interactions between the target molecule and MOF as well as the shielding by the IRMOF-1 fragment induced by the molecular adsorption. The relative importance of these effects depends on the chemical nature, the size, and the shape of the molecule and MOF. Small-size molecules require smaller space for the adsorption and also they are less shielded by the sizeable adsorbent. So they interact better when adsorbed on larger IRMOF-1 fragment. On the other side, larger molecules show higher adsorption strength with small fragments of IRMOF-1.

Keywords

IRMOF RDX TATP Adsorption Ab initio study 

References

  1. 1.
    Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Science 298:1762CrossRefGoogle Scholar
  2. 2.
    Rowsell JCL, Millward AR, Park KS, Yaghi OM (2004) J Am Chem Soc 126:5666CrossRefGoogle Scholar
  3. 3.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127CrossRefGoogle Scholar
  4. 4.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469Google Scholar
  5. 5.
    Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin N, Deng X, Cai C, Barth JV, Kern K (2004) Nat Mater 3:229CrossRefGoogle Scholar
  6. 6.
    Lingenfelder MA, Spillmann H, Dmitriev A, Stepanow S, Lin N, Barth JV, Kern K (2004) Chem-Eur J 10:1913CrossRefGoogle Scholar
  7. 7.
    Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature (London) 404:982CrossRefGoogle Scholar
  8. 8.
    Pan L, Sander MB, Huang X, Li J, Smith M, Bittner E, Bockrath B, Johnson JK (2004) J Am Chem Soc 126:1308CrossRefGoogle Scholar
  9. 9.
    Lee J-Y, Li J, Jagiello J (2005) J Solid State Chem 178:2527CrossRefGoogle Scholar
  10. 10.
    Vishnyakov A, Ravikovitch PI, Neimark AV, Bulow M, Wang QM (2003) Nano Lett 3:713CrossRefGoogle Scholar
  11. 11.
    Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y (2003) Microporous Mesoporous Mater 58:105CrossRefGoogle Scholar
  12. 12.
    Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K-P, Bjorgen M, Zecchina A (2004) Chem Commun 20:2300CrossRefGoogle Scholar
  13. 13.
    Rowsell JLC, Yaghi OM (2005) Angew Chem Int Ed 44:4670CrossRefGoogle Scholar
  14. 14.
    Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Acc Chem Res 31:474CrossRefGoogle Scholar
  15. 15.
    Kepert CJ, Rosseinsky MJ (1999) Chem Commun 4:375CrossRefGoogle Scholar
  16. 16.
    Rowsell JLC, Eckert J, Yaghi OM (2005) J Am Chem Soc 127:14904CrossRefGoogle Scholar
  17. 17.
    Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Acc Chem Res 34:319CrossRefGoogle Scholar
  18. 18.
    Clegg W, Harbron DR, Homan CD, Hunt PA, Little IR, Straughan BP (1991) Inorg Chim Acta 186:51CrossRefGoogle Scholar
  19. 19.
    Yin M-C, Wang C-W, Al C-C, Yuan L-J, Sun J-T (2004) Wuhan Univ J Nat Sci 9:939CrossRefGoogle Scholar
  20. 20.
    Sarkisov L, Duren T, Snurr R (2004) Q Mol Phys 102:211CrossRefGoogle Scholar
  21. 21.
    Sagara T, Ortony J, Ganz E (2005) J Chem Phys 123:214707CrossRefGoogle Scholar
  22. 22.
    Skoulidas AI, Sholl DS (2005) J Phys Chem B109:15760Google Scholar
  23. 23.
    Yang QY, Zhong CL (2005) J Phys Chem B 109:11862CrossRefGoogle Scholar
  24. 24.
    Yang QY, Zhong CL (2006) J Phys Chem B 110:655CrossRefGoogle Scholar
  25. 25.
    Sagara T, Klassen J, Ganz E (2004) J Chem Phys 121:12543CrossRefGoogle Scholar
  26. 26.
    Sagara T, Klassen J, Ortony J, Ganz E (2005) J Chem Phys 123:014701CrossRefGoogle Scholar
  27. 27.
    Mueller T, Ceder G (2005) J Phys Chem B 109:17974CrossRefGoogle Scholar
  28. 28.
    Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjørgen M, Hafizovic J, Lillerud KP (2005) J Phys Chem B 109:18237CrossRefGoogle Scholar
  29. 29.
    Garberoglio G, Skoulidas AI, Johnson JK (2005) J Phys Chem B 109:13094CrossRefGoogle Scholar
  30. 30.
    Tsiaousis D, Munn RW (2005) J Chem Phys 122:184708CrossRefGoogle Scholar
  31. 31.
    Luty T, Ordon P, Eckhardt CJ (2002) J Chem Phys 117:1775CrossRefGoogle Scholar
  32. 32.
    Ryzhkov LR, Toscano JP (2005) Cryst Growth Des 5:2066CrossRefGoogle Scholar
  33. 33.
    Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) J Phys Chem A 104:2261CrossRefGoogle Scholar
  34. 34.
    Boyd S, Gravelle M, Politzer P (2006) J Chem Phys 124:104508CrossRefGoogle Scholar
  35. 35.
    Harris NJ, Lammertsma K (1997) J Am Chem Soc 119:6583CrossRefGoogle Scholar
  36. 36.
    Rice BM, Chabalowski CF (1997) J Phys Chem A 101:8720CrossRefGoogle Scholar
  37. 37.
    Dubnikova F, Kosloff R, Zeiri Y, Karpas Z (2002) J Phys Chem A 106:4951CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Muller D, Abramovich-Bar S, Shelef R, Tamiri T, Sonenfeld D, Levy A (2001) The post-explosion analysis of TATP Fourth Conf Israel Soc of Anal Chem, Tel-Aviv, Israel, January 24–25Google Scholar
  40. 40.
    Reutter DJ, Bender EC, Rudolph TL (1983) Proc 1st Int Symp on the Analysis and Detection of Explosives. FBI Academy Quantico VA, USA, 29–31 March, p 149Google Scholar
  41. 41.
    Cooper RT Los Angeles Times, 29 Dec 2001, p A12Google Scholar
  42. 42.
    Xiong R, Fern JT, Keffer DJ, Fuentes-Cabrera M, Nicholson, DN (2009) Molecular simulation SN:0892-7022Google Scholar
  43. 43.
    Odbadrakh K, Nicholson DM, Petrova T, Michalkova A, Leszczynski J, Lewis J P (2009) J Phys Chem (submitted)Google Scholar
  44. 44.
    Handerlein SB, Weissmahr KW, Schwarzenbach RP (1996) Environ Sci Technol 30:612CrossRefGoogle Scholar
  45. 45.
    Price CB, Brannon JM, Yost SL, Hayes CA (2001) Technical Report IRRP-01-19 U S Army Engineer Waterways Experiment Station. Vicksburg, MSGoogle Scholar
  46. 46.
    Tucker WA, Murphy GJ, Arenberg ED (2002) Soil Sediment Contam 11:809CrossRefGoogle Scholar
  47. 47.
    Brannon JM, Price CB, Hayes C, Yost SL (2002) Soil Sediment Contam 11:327CrossRefGoogle Scholar
  48. 48.
    Yamamoto H, Morley MC, Speitel JRGE, Clausen J (2004) Soil Sediment Contam 13:361Google Scholar
  49. 49.
    Pelmenschikov A, Leszczynski J (1999) J Phys Chem B 103:6886CrossRefGoogle Scholar
  50. 50.
    Gorb L, Lutchyn R, Yu Zub, Leszczynska D, Leszczynski J (2006) Theochem 766:151CrossRefGoogle Scholar
  51. 51.
    Gorb L, Gu J, Leszczynska D, Leszczynski J (2000) Phys Chem Chem Phys 2:5007CrossRefGoogle Scholar
  52. 52.
    Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E (2005) J Am Chem Soc 127:1146CrossRefGoogle Scholar
  53. 53.
    Efremenko I, Zach R, Zeiri Y (2007) J Phys Chem C 111:11903CrossRefGoogle Scholar
  54. 54.
    Schulte-Ladbeck R, Vogel M, Karst U (2006) Anal Bioanal Chem 386:559CrossRefGoogle Scholar
  55. 55.
    Munoz RAA, Lu D, Cagan A, Wang J (2007) Analyst 132:560CrossRefGoogle Scholar
  56. 56.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  57. 57.
    Kohn W, Sham L (1965) J Phys Rev 140:A1133CrossRefGoogle Scholar
  58. 58.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C02. Gaussian Inc, Wallingford CTGoogle Scholar
  59. 59.
    Becke D (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  60. 60.
    Yang LW, Parr RG (1998) Phys Rev B B37:785Google Scholar
  61. 61.
    Dunning Jr TH, Hay PJ (1976) In: Schaefer III HF (ed) Modern theoretical chemistry, vol 3. Plenum New York, p 1Google Scholar
  62. 62.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270CrossRefGoogle Scholar
  63. 63.
    Ermakov AI, Mashutin VY, Vishnjakov AV (2005) Int J Quant Chem 104:181CrossRefGoogle Scholar
  64. 64.
    Brocławik E, Borowski T (2001) Chem Phys Lett 339:433CrossRefGoogle Scholar
  65. 65.
    Song X, Liu G, Yu J, Rodrigues AE (2004) Theochem 684:81CrossRefGoogle Scholar
  66. 66.
    Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  67. 67.
    Koch U, Popelier PLA (1995) J Phys Chem 99:9747CrossRefGoogle Scholar
  68. 68.
    Popelier PAL (1998) J Phys Chem A 102:1873CrossRefGoogle Scholar
  69. 69.
  70. 70.
  71. 71.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  72. 72.
    Michalkova A, Gorb L, Ilchenko M, Zhikol OA, Shishkin OV, Leszczynski J (2004) J Phys Chem B 108:1918CrossRefGoogle Scholar
  73. 73.
    Desiraju GR (1991) Acc Chem Res 24:290CrossRefGoogle Scholar
  74. 74.
    Michalkova A, Szymczak JJ, Leszczynski J (2005) Struct Chem 16:325CrossRefGoogle Scholar
  75. 75.
    Zhou W, Yildirim T (2008) J Phys Chem C 112:8132CrossRefGoogle Scholar
  76. 76.
    Hu¨bner O, Glo¨ss A, Fichtner M, Klopper W (2004) J Phys Chem A 108:3019CrossRefGoogle Scholar
  77. 77.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612CrossRefGoogle Scholar
  78. 78.
    Bergner A, Dolg M, Kuchle W, Stoll H, Preuss H (1993) Mol Phys 80:1431CrossRefGoogle Scholar
  79. 79.
    Dolg M (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, vol 1. John von Neumann Institute for Computing, Julich, p 479Google Scholar
  80. 80.
    Day G, Glaser R, Shimomura N, Takamuku A, Ichikawa K (2000) Chem Eur J 6:1078CrossRefGoogle Scholar
  81. 81.
    Widjaja Y, Musgravea CB (2002) J Chem Phys 117:1931CrossRefGoogle Scholar
  82. 82.
    Shagun VA, Shevchenko SG, Frolov YuL (2003) J Struct Chem 44:736CrossRefGoogle Scholar
  83. 83.
    Cundari TR, Leza HAR, Grimes T, Steyl G, Waters A, Wilson AK (2005) Chem Phys Lett 401:58CrossRefGoogle Scholar
  84. 84.
    Rotzinger FP (2005) J Phys Chem B 109:1510CrossRefGoogle Scholar
  85. 85.
    Martins JBL, Andres J, Longo E, Taft CA (1995) Theochem 330:301CrossRefGoogle Scholar
  86. 86.
    Martins JBL, Moliner V, Andres J, Longo E, Taft CA (1995) Theochem 330:347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Interdisciplinary Nanotoxicity Center, Department of ChemistryJackson State UniversityJacksonUSA

Personalised recommendations