Structural Chemistry

, Volume 20, Issue 4, pp 557–563 | Cite as

Chiral distinction in square planar Pt and Pd complexes of 2,2′-bipyridine derivatives

Original Research

Abstract

A computational study of square planar organometallic complexes formed by the ligand 2,2′-bipyridine and all its possible difluoro derivatives in analogous position of the aromatic rings (n,n′-difluoro-2,2′-bipyridine, where n = n′ = 3, 4, 5, and 6) and two M–X2 (M = Pd and Pt and X = F, Cl, Br, and I) fragments has been carried out amounting to a total of 80 complexes. Relationships have been found between the chiral distinction energy and the different chemical moieties present. Using the statistical Free-Wilson method, the relative energies between the diastereomeric complexes have been correlated with the position of the substituent, the counter anion, and the central metal cation.

Keywords

Chiral distinction 2,2′-bipyridine Square planar complexes Pt Pd 

Notes

Acknowledgments

This work was carried out with financial support from the Ministerio de Educación y Ciencia (Projects No. CTQ2007-61901/BQU) and Comunidad Autónoma de Madrid (Project MADRISOLAR, ref. S-0505/PPQ/0225). We thank the CTI (CSIC) for computational facilities.

References

  1. 1.
    Amouri H, Gruselle M (2008) Chirality in transition metal chemistry: molecules, supramolecular assemblies and materials. Wiley, Chippenham, UKGoogle Scholar
  2. 2.
    Maseras F, Lledos A (2002) Computational modeling of homogeneous catalysis. Kluwer, New YorkCrossRefGoogle Scholar
  3. 3.
    Girard C, Kagan HB (1998) Angew Chem Int Ed 37:2922CrossRefGoogle Scholar
  4. 4.
    Yamakawa M, Noyori R (1995) J Am Chem Soc 117:6327CrossRefGoogle Scholar
  5. 5.
    Speranza M (2004) Adv Phys Org Chem 39:147CrossRefGoogle Scholar
  6. 6.
    Tao WA, Zhang DX, Nikolaev EN, Cooks RG (2000) J Am Chem Soc 122:10598CrossRefGoogle Scholar
  7. 7.
    Paladini A, Calcagni C, Di Palma T, Speranza M, Lagana A, Fago G, Filippi A, Satta M, Guidoni AG (2001) Chirality 13:707CrossRefGoogle Scholar
  8. 8.
    Folmer-Andersen JF, Lynch VM, Anslyn EV (2005) J Am Chem Soc 127:7986CrossRefGoogle Scholar
  9. 9.
    Cucciolito ME, Flores G, Vitagliano A (2004) Organometallics 23:15CrossRefGoogle Scholar
  10. 10.
    Jodry JJ, Frantz R, Lacour J (2004) Inorg Chem 43:3329CrossRefGoogle Scholar
  11. 11.
    Chow HS, Constable EC, Frantz R, Housecroft CE, Lacour J, Neuburger M, Rappoport D, Schaffner S (2009) New J Chem 33:376CrossRefGoogle Scholar
  12. 12.
    Alkorta I, Picazo O, Elguero J (2005) J Phys Chem A 109:9573CrossRefGoogle Scholar
  13. 13.
    Rozas I, Alkorta I, Elguero J (2006) J Phys Chem A 110:13310CrossRefGoogle Scholar
  14. 14.
    Picazo O, Alkorta I, Elguero J, Sundberg MR, Valo J (2007) Eur J Inorg Chem 324Google Scholar
  15. 15.
    Picazo O, Alkorta I, Elguero J, Sundberg MR (2006) Inorg Chem Commun 9:712CrossRefGoogle Scholar
  16. 16.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  17. 17.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  18. 18.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala P Y, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh, PAGoogle Scholar
  20. 20.
    Frisch MJ Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh, PAGoogle Scholar
  21. 21.
    Bader RFW (1990) Atoms in molecules a quantum theory. Oxford University, New YorkGoogle Scholar
  22. 22.
    Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317CrossRefGoogle Scholar
  23. 23.
    Biegler-König FW, Schönbom J (2002) AIM2000, 2nd edn. Bielefeld, GermanyGoogle Scholar
  24. 24.
    CSD database version 5.30 (November 2008)Google Scholar
  25. 25.
    Montet Y, Kozelka J (1999) Inorg Chim Acta 284:103CrossRefGoogle Scholar
  26. 26.
    Agranat I, Sarel S (1996) Enantiomer 1:249Google Scholar
  27. 27.
    Free SM, Wilson JW (1964) J Med Chem 7:395CrossRefGoogle Scholar
  28. 28.
    Alkorta I, Blanco F, Elguero J (2008) Tetrahedron 64:3826CrossRefGoogle Scholar
  29. 29.
    Nabavizadeh SM, Rashidi M (2007) Polyhedron 26:1476CrossRefGoogle Scholar
  30. 30.
    Aue DH, Webb HM, Davidson WR, Toure P, Hopkins HP Jr, Moulik SP, Jahagirdar DV (1991) J Am Chem Soc 113:1770CrossRefGoogle Scholar
  31. 31.
    Alkorta I, Elguero J (2004) Struct Chem 15:117CrossRefGoogle Scholar
  32. 32.
    Matta CF, Castillo N, Boyd RJ (2005) J Phys Chem A 109:3669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Oscar Picazo
    • 1
  • Ibon Alkorta
    • 1
  • José Elguero
    • 1
  • Markku R. Sundberg
    • 2
  • Jaana Valo
    • 2
  • Krzysztof Zborowski
    • 3
  1. 1.Instituto de Química Médica (C.S.I.C.)MadridSpain
  2. 2.Laboratory of Inorganic Chemistry, Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  3. 3.Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations