Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isomeric structures of benzimidazole, benzoxazole, and benzothiazole derivatives, their electronic properties and transformations

  • 328 Accesses

  • 12 Citations

Abstract

The optimized structures of all isomers of HBI, HBO, HBT, HPyBI, HPyBO, and HPyBT compounds were obtained using the potential energy surface method at the B3LYP/6-311++G(d,p) level of theory. Four isomers and three transition states of their transformations for each compound of HBO, HBT, HPyBO, and HPyBT and two isomers and one transition state for each HBI and HPyBI compounds were found. Energetics, thermodynamic properties, rate constants, and equilibrium constants of their transformations were determined.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Lim S-J, Seo J, Park SY (2006) J Am Chem Soc 128:14542–14547. doi:10.1021/ja0637604

  2. 2.

    Ma DG, Liang FS, Wang LX, Lee ST, Hung LS (2002) Chem Phys Lett 358:24–28. doi:10.1016/S0009-2614(02)00546-8

  3. 3.

    Paterson MJ, Robb MA, Blancafort L, DeBellis AD (2005) J Phys Chem A 109:7527–7537. doi:10.1021/jp051108+

  4. 4.

    Klymchenko AS, Pivovarenko VG, Demchenko AP (2003) J Phys Chem A 107:4211–4216. doi:10.1021/jp027315g

  5. 5.

    Sarkar M, Ray JG, Sengupta PK (1996) Spectrochim Acta A Mol Biomol Spectrosc 52:275–278. doi:10.1016/0584-8539(95)01622-8

  6. 6.

    Klymchenko AS, Demchenko AP (2002) Langmuir 18:5637–5639. doi:10.1021/la025760x

  7. 7.

    Das K, Sarkar N, Majumdar D, Bhattacharyya K (1992) Chem Phys Lett 198:443–448. doi:10.1016/0009-2614(92)80025-7

  8. 8.

    Das K, Sarkar N, Ghosh AK, Majumdar D, Nath DN, Bhattacharyya K (1994) J Phys Chem 98:9126–9132. doi:10.1021/j100088a006

  9. 9.

    Mosquera M, Penedo JC, Rios Rodriguez MC, Rodriguez-Preito F (1996) J Phys Chem 100:5398–5407. doi:10.1021/jp9533638

  10. 10.

    Rios MA, Rios MC (1998) J Phys Chem 102:1560–1567

  11. 11.

    Rios MA, Rios MC (1995) J Phys Chem 99:12456–12460. doi:10.1021/j100033a014

  12. 12.

    Ohshima A, Momotake A, Nagahata R, Arai T (2005) J Phys Chem A 109:9731–9736. doi:10.1021/jp053702p

  13. 13.

    Fernandez-Ramos A, Rodriguez-Otero J, Rios MA, Soto J (1999) J Mol Struct THEOCHEM 489:255–262. doi:10.1016/S0166-1280(99)00062-7

  14. 14.

    Lochbrunner S, Stock K, Riedle E (2004) J Mol Struct 700:13–18. doi:10.1016/j.molstruc.2004.01.038

  15. 15.

    Abou-Zied OK, Jimenze R, Romesberg FE (2001) J Am Chem Soc 123:4613–4614. doi:10.1021/ja003647s

  16. 16.

    Dupradeau FY, Case DA, Yu C, Jimenez R, Romesberg FE (2005) J Am Chem Soc 127:15612–15617. doi:10.1021/ja054607x

  17. 17.

    Wang H, Zhang H, Abou-Zied OK, Yu C, Romesberg FE, Glasbeek M (2003) Chem Phys Lett 367:599–608. doi:10.1016/S0009-2614(02)01741-4

  18. 18.

    Chou P-T, Studer SL, Martinez ML (1991) Chem Phys Lett 178:393–398. doi:10.1016/0009-2614(91)90271-A

  19. 19.

    Chou P-T, Martinez ML, Studer SL (1992) Chem Phys Lett 195:586–590. doi:10.1016/0009-2614(92)85567-T

  20. 20.

    Lochbrunner S, Wurzer AJ, Riedle E (2003) J Phys Chem A 107:10580–10590. doi:10.1021/jp035203z

  21. 21.

    Vivie-Riedle R, De Waele V, Kurtz L, Riedle E (2003) J Phys Chem A 107:10591–10599. doi:10.1021/jp035204r

  22. 22.

    Rodriguez-Preito F, Rios Rodriguez MC, Mosquera Gonzalez M, Rios Fernandez MA (1994) J Phys Chem 98:8666–8672. doi:10.1021/j100086a014

  23. 23.

    Vazquez SR, Rodriguez MCR, Mosquera M, Rodriguez-Preito F (2007) J Phys Chem A 111:1814–1826. doi:10.1021/jp0653813

  24. 24.

    Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913

  25. 25.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

  26. 26.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2006) Gaussian 03, Revision C.02. Gaussian Inc., Wallingford, CT

  27. 27.

    Sabin JR, Trickey SB, Apell SP, Oddershede J (2000) Int J Quantum Chem 77:358. doi:10.1002/(SICI)1097-461X(2000)77:1<358::AID-QUA35>3.0.CO;2-D

  28. 28.

    Koopmans T (1933) Physica 1:104–113. doi:10.1016/S0031-8914(34)90011-2

  29. 29.

    Wanno B, Ruangpornvisuti V (2005) Chem Phys Lett 415:176–182. doi:10.1016/j.cplett.2005.08.141

  30. 30.

    Wanno B, Ruangpornvisuti V (2006) J Mol Struct 787:76–89. doi:10.1016/j.molstruc.2005.11.006

  31. 31.

    Wanno B, Ruangpornvisuti V (2006) J Mol Struct THEOCHEM 766:159–164. doi:10.1016/j.theochem.2006.04.011

  32. 32.

    Wanno B, Ruangpornvisuti V (2006) J Mol Struct THEOCHEM 775:113–120. doi:10.1016/j.theochem.2006.08.017

  33. 33.

    Navakhun K, Ruangpornvisuti V (2006) J Mol Struct THEOCHEM 772:23–30. doi:10.1016/j.theochem.2006.06.013

  34. 34.

    Navakhun K, Ruangpornvisuti V (2007) J Mol Struct THEOCHEM 806:145–153. doi:10.1016/j.theochem.2006.11.016

  35. 35.

    Keawwangchai S, Tuntulani T, Ruangpornvisuti V (2007) J Mol Struct 832:16–25. doi:10.1016/j.molstruc.2006.07.039

  36. 36.

    Ruangpornvisuti V (2007) Struct Chem 18:977–984. doi:10.1007/s11224-007-9258-7

  37. 37.

    Thipyapong K, Ruangpornvisuti V (2008) J Mol Struct 891:1–10. doi:10.1016/j.molstruc.2008.02.004

  38. 38.

    Wigner EZ (1932) Phys Chem B 19:203–204

  39. 39.

    Hirschfelder JO, Wigner E (1939) J Chem Phys 7:616–628. doi:10.1063/1.1750500

  40. 40.

    Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, London

  41. 41.

    Leffler JE (1953) Science 117:340–341. doi:10.1126/science.117.3039.340

  42. 42.

    Hammond GS (1955) J Am Chem Soc 77:334–338. doi:10.1021/ja01607a027

  43. 43.

    Pearson RG (2001) Hard and soft acids and bases. Dowden (Hutchison & Ross), Stroudsburg, PA

Download references

Acknowledgments

This work was partially supported from financial support via the Thailand Research Fund (TRF), Grant No. MRG5080266 and the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education. This work was partially supported by the National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials.

Author information

Correspondence to Vithaya Ruangpornvisuti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suwattanamala, A., Ruangpornvisuti, V. Isomeric structures of benzimidazole, benzoxazole, and benzothiazole derivatives, their electronic properties and transformations. Struct Chem 20, 619–631 (2009). https://doi.org/10.1007/s11224-009-9454-8

Download citation

Keywords

  • Intramolecular proton transfer
  • Transformation
  • Structure
  • Isomer
  • DFT