Structural Chemistry

, Volume 20, Issue 1, pp 37–41 | Cite as

Novel type of mixed O–H···N/O–H···π hydrogen bonds: monohydrate of pyridine

  • Oleg V. Shishkin
  • Irina S. Konovalova
  • Leonid Gorb
  • Jerzy Leszczynski
Original Research

Abstract

Investigation of characteristics of hydrogen bonding between pyridine and water by MP2/aug-cc-pvdz method reveals that these two molecules may form three types of hydrogen bonds depending on nature of proton withdrawal site of pyridine. Change of orientation of water with respect to plane of aromatic ring leads to transformation of the O–H···N bond to O–H···π bond via wide region of the potential energy surface where both lone pair of the nitrogen atom and π-system make significant contribution into hydrogen bonding. Hydrogen bond in this intermediate region may be considered as mixed O–H···N/O–H···π bond representing new type of H bonds.

Keywords

Hydrogen bonding π-system Pyridine monohydrate 

References

  1. 1.
    Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Grabowski S (ed) (2006) Hydrogen bonding: new insights. Challenges & advances in computational chemistry & physics, vol 3, Springer, DordrechtGoogle Scholar
  3. 3.
    Meot-Ner (Mautner) M (2005) Chem Rev 105:213. doi:10.1021/cr9411785 CrossRefGoogle Scholar
  4. 4.
    Steiner T (2002) Angew Chem Int Ed 41:48. doi:10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-UCrossRefGoogle Scholar
  5. 5.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Sukhanov OS, Shishkin OV, Gorb L, Podolyan Y, Leszczynski J (2003) J Phys Chem B 107:2846. doi:10.1021/jp026487a CrossRefGoogle Scholar
  7. 7.
    Sukhanov OS, Shishkin OV, Gorb L, Leszczynski J (2008) Struct Chem 19:171. doi:10.1007/s11224-007-9266-7 CrossRefGoogle Scholar
  8. 8.
    Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561 CrossRefGoogle Scholar
  9. 9.
    Meumier A, Levy B, Berthier G (1973) Theor Chim Acta 29:49. doi:10.1007/BF00528166 CrossRefGoogle Scholar
  10. 10.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01, Gaussian Inc., Wallingford, CTGoogle Scholar
  11. 11.
    Weinhold F (1998) Natural bond orbital methods. In: Encyclopedia of computational chemistry, vol 3. John Wiley & Sons, Chichester, p 1792Google Scholar
  12. 12.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899. doi:10.1021/cr00088a005 CrossRefGoogle Scholar
  13. 13.
    King BF, Weinhold F (1995) J Chem Phys 103:333. doi:10.1063/1.469645 CrossRefGoogle Scholar
  14. 14.
    Weinhold F (1997) J Mol Struct THEOCHEM 398:181. doi:10.1016/S0166-1280(96)04936-6 CrossRefGoogle Scholar
  15. 15.
    Wong NB, Cheung YS, Wu DY, Ren Y, Tian AM, Li WK (2000) J Mol Struct THEOCHEM 507:153. doi:10.1016/S0166-1280(99)00386-3 CrossRefGoogle Scholar
  16. 16.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2005) NBO 5.0. Theoretical Chemistry Institute. University of Wisconsin, Madison, USAGoogle Scholar
  17. 17.
    Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:545. doi:10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-YCrossRefGoogle Scholar
  19. 19.
    Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170. doi:10.1016/S0009-2614(98)00036-0 CrossRefGoogle Scholar
  20. 20.
    Lyssenko KA, Korlyukov AA, Golovanov DG, Ketkov SY, Antipin MY (2006) J Phys Chem A 110:6543. doi:10.1021/jp057516v CrossRefGoogle Scholar
  21. 21.
    Lyssenko KA, Antipin MY (2006) Russ Chem Bull 55:1. doi:10.1007/s11172-006-0208-0
  22. 22.
    Destexhe A, Smets J, Adamowicz L, Maes G (1994) J Phys Chem 98:1506. doi:10.1021/j100056a023 CrossRefGoogle Scholar
  23. 23.
    Dkhissi A, Adamowicz L, Maes G (2000) J Phys Chem A 104:2112. doi:10.1021/jp9938056 CrossRefGoogle Scholar
  24. 24.
    Smets J, McCarthy W, Maes G, Adamowicz L (1999) J Mol Struct 476:27. doi:10.1016/S0022-2860(98)00536-5 CrossRefGoogle Scholar
  25. 25.
    Cambridge Crystal Structure Database. Release (2008) Google Scholar
  26. 26.
    Baxter PNW, Connor JA, Wallis JD, Povey DC, Powell AK (1992) J Chem Soc Perkin Trans 1 1601. doi:10.1039/p19920001601
  27. 27.
    Langer P, Hoffmann HMR (1997) Tetrahedron 53:9145. doi:10.1016/S0040-4020(97)00609-1 CrossRefGoogle Scholar
  28. 28.
    Langer P, Hoffmann HMR, Wartchow R (1998) Z Kristallogr New Cryst Struct 213:193Google Scholar
  29. 29.
    Opozda EM, Lasocha W, Wlodarczyk-Gajda B (2006) J Mol Struct 784:149. doi:10.1016/j.molstruc.2005.08.034 CrossRefGoogle Scholar
  30. 30.
    Larson SB, Sanghvi YS, Revankar GR, Robins RK (1990) Acta Crystallogr C 46:791. doi:10.1107/S0108270189008498 CrossRefGoogle Scholar
  31. 31.
    Padilla-Martinez II, Martinez-Martinez FJ, Garcia-Baez EV, Torres-Valencia JM, Rojas-Lima S, Hopfl H (2001) J Chem Soc Perkin Trans 2 181Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Oleg V. Shishkin
    • 1
    • 2
    • 3
  • Irina S. Konovalova
    • 1
    • 2
  • Leonid Gorb
    • 2
    • 4
    • 5
  • Jerzy Leszczynski
    • 2
    • 4
  1. 1.SSI “Institute for Single Crystals”National Academy of Science of UkraineKharkivUkraine
  2. 2.Ukrainian-American Laboratory of Computational ChemistryKharkivUkraine
  3. 3.V.N. Karazin Kharkiv National UniversityKharkivUkraine
  4. 4.Interdisciplinary Nanotoxicity Center, Department of ChemistryJackson State UniversityJacksonUSA
  5. 5.Department of Molecular Biophysics, Institute of Molecular Biology and GeneticsNational Academy of Science of UkraineKyivUkraine

Personalised recommendations