Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Architecture of intracellular networks in plant matrices

  • 148 Accesses

  • 17 Citations

Abstract

Pectin is an integral component of plant cell walls. It is believed to form an interconnected network structure independent of the cellulose–xyloglucan network structure. Pectin gels are often used as a model for the pectin network structure within the plant cell wall. The middle lamella pectin can be extracted with chelating agents and is believed to be associated through cooperative binding of calcium ions in the so-called egg-box junction zones. Although a great deal is known about the nature of the junction zones in pectin gels, less is known about the long-range structure within calcium-set gels. Two plausible alternative models for long-range order in these gels are a pseudo rubber-like structure and a fibrous network structure. Atomic force microscopy studies of calcium-induced gel precursors, and fragments released from gels, suggest that association leads to a branched fibrous structure within the gels. Enzymatic de-esterification of high methoxy pectin in the presence of calcium ions can induce gelation of the pectin. Thus pectin gel networks may provide a model for a self-assembled network structure within the middle lamella region of the plant cell wall.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) Planta 51:188

  2. 2.

    McCann MC, Roberts K (1991) In: Lloyd CW (ed) The Cytoskeletal Basis of Plant Growth and Form. Academic Press, London, p 109

  3. 3.

    Talbert LF, Ray PM (1992) Plant Physiol 98:357. doi:10.1104/pp.98.1.357

  4. 4.

    Carpita NC, Gibeaut DM (1993) Plant J 3:1. doi:10.1111/j.1365-313X.1993.tb00007.x

  5. 5.

    McCann MC, Roberts KJ (1994) Exp. Bot 45:1683

  6. 6.

    Ha MA, Apperley DC, Jarvis M (1997) Plant Physiol 115:593

  7. 7.

    McCann MC, Wells B, Roberts KJ (1990) Cell Sci 96:323

  8. 8.

    Satiat-Jeunemaitre B, Martin B, Hawes C (1992) Protoplasma 167:33. doi:10.1007/BF01353578

  9. 9.

    Itoh T, Ogawa T (1993) Plant Cell Physiol 34:1187

  10. 10.

    Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) Plant Physiol 124:397. doi:10.1104/pp.124.1.397

  11. 11.

    Kirby AR, Gunning AP, Waldron KW, Morris VJ, Ng A (1996) Biophys. J 70:1138

  12. 12.

    Kirby AR, Ng A, Waldron KW, Morris VJ (2005) Food Biophys 1:163. doi:10.1007/s11483-006-9013-4

  13. 13.

    Round AN, Rigby NM, Ring SG, Morris VJ (1997) Carbohydr. Res 303:251. doi:10.1016/S0008-6215(97)00175-4

  14. 14.

    Round AN, Rigby NM, Ring SG, Morris VJ (2001) Carbohydr. Res 331:337. doi:10.1016/S0008-6215(01)00039-8

  15. 15.

    Morris VJ (1998) In: Hill SE, Ledward DA, Mitchell JR (eds) Functional properties of Food Macromolecules. Chapman and Hall, Aspen, USA, p 143 Chap. 4

  16. 16.

    MacDougall AJ, Needs PW, Rigby NM, Ring SG (1996) Carbohydr. Res 293:235. doi:10.1016/0008-6215(96)00197-8

  17. 17.

    Williamson G, Faulds CB, Matthews JA, Archer DB, Morris VJ, Brownsey GJ, Ridout MJ (1990) Carbohydr. Polym 13:387. doi:10.1016/0144-8617(90)90038-T

  18. 18.

    Tibbits CW, MacDougall AJ, Ring SG (1998) Carbohydr. Res 310:101. doi:10.1016/S0008-6215(98)00172-4

  19. 19.

    Ryden P, MacDougall AJ, Tibbits CW, Ring SG (2000) Biopolymers 54:398. doi:10.1002/1097-0282(200011)54:6<398::AID-BIP40>3.0.CO;2-G

  20. 20.

    MacDougall AJ, Rigby NM, Ryden P, Tibbits CW, Ring SG (2001) Biomacromolecules 2:450. doi:10.1021/bm005632s

  21. 21.

    Zsivanovits G, MacDougall AJ, Smith AC, Ring SG (2004) Carbohydr. Res 339:1317. doi:10.1016/j.carres.2004.02.027

  22. 22.

    Gunning AP, Kirby AR, Ridout MJ, Brownsey GJ, Morris VJ (1996) Macromolecules 29:6791. doi:10.1021/ma960700h

  23. 23.

    Morris VJ, Kirby AR, Gunning AP (1999) Prog. Colloid. Polym. Sci 114:102. doi:10.1007/3-540-48349-7_15

  24. 24.

    Löfgren C, Guillotin S, Evenbratt H, Schols H, Hermansson AM (2005) Biomacromolecules 6:646. doi:10.1021/bm049619+

  25. 25.

    Löfgren C, Guillotin S, Hermansson AM (2006) Biomacromolecules 7:114. doi:10.1021/bm050459r

  26. 26.

    Fishman ML, Cooke PH, Coffin DR (2004) Biomacromolecules 5:334. doi:10.1021/bm0300655

  27. 27.

    Fishman ML, Cooke PH, Chau HK, Coffin DR, Hotchkiss AT (2007) Biomacromolecules 8:573. doi:10.1021/bm0607729

  28. 28.

    Kirby AR, MacDougall AJ, Morris VJ (2006) Food Biophys 1:51. doi:10.1007/s11483-006-9005-4

  29. 29.

    Kirby AR, McDougall AJ, Morris VJ (2007) Carbohydr. Polym 71:640. doi:10.1016/j.carbpol.2007.07.014

Download references

Acknowledgments

The research was supported through the core BBSRC grant to IFR, and through funding for the BBSRC responsive mode grant BB/E002153/1.

Author information

Correspondence to V. J. Morris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morris, V.J., Gromer, A. & Kirby, A.R. Architecture of intracellular networks in plant matrices. Struct Chem 20, 255–261 (2009). https://doi.org/10.1007/s11224-009-9410-7

Download citation

Keywords

  • Middle lamella pectin networks
  • Pectin gels
  • Atomic force microscopy
  • AFM
  • Plant cell walls