Structural Chemistry

, Volume 20, Issue 1, pp 63–71 | Cite as

A computational study of the cooperativity in clusters of interhalogen derivatives

Original Research

Abstract

The clusters, up to four monomers, of the interhalogen derivatives (FCl, FBr, and ClBr) have been studied by means of ab initio and DFT methods, up to MP2/aug-cc-pVTZ computational methods. Two dispositions, linear and cyclic, of the clusters have been studied. Cooperative effects in the geometry, energy, and electron density have been observed in the linear and cyclic dispositions of these clusters. The Natural Energy Decomposition Analysis shows that the main source of the interaction corresponds to the polarization term.

Keywords

Interhalogen DFT MP2 Cooperativity Non-pairwise effects 

Supplementary material

11224_2008_9392_MOESM1_ESM.pdf (21 kb)
MOESM1 (PDF 20 kb)

References

  1. 1.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Scheiner S (1997) Hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  5. 5.
    Nishio M, Hirota M, Umezawa Y (1998) The CH interaction. Wiley, New YorkGoogle Scholar
  6. 6.
    Scheiner S (ed) (1997) Molecular interactions: from Van der Waals to strong bound complexes. Wiley, ChichesterGoogle Scholar
  7. 7.
    Jeffrey JA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, BerlinGoogle Scholar
  8. 8.
    Umeyama H, Morokuma K, Yamabe S (1997) J Am Chem Soc 99:330CrossRefGoogle Scholar
  9. 9.
    Kollman P, Dearling A, Kochanski E (1982) J Phys Chem 86:1607CrossRefGoogle Scholar
  10. 10.
    Røeggen I, Dahl T (1992) J Am Chem Soc 114:511CrossRefGoogle Scholar
  11. 11.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910CrossRefGoogle Scholar
  12. 12.
    Legon AC, Lister DG, Thorn JC (1994) J Chem Soc Chem Commun 757Google Scholar
  13. 13.
    Legon AC, Lister DG, Thorn JC (1994) J Chem Soc Faraday Trans 90:3205CrossRefGoogle Scholar
  14. 14.
    Bloemink HI, Legon AC, Thorn JC (1994) J Chem Soc Faraday Trans 90:781Google Scholar
  15. 15.
    Legon AC (1995) J Chem Soc Faraday Trans 91:781CrossRefGoogle Scholar
  16. 16.
    Legon AC (1998) Chem Eur J 4:1890CrossRefGoogle Scholar
  17. 17.
    Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311CrossRefGoogle Scholar
  18. 18.
    Latajka Z, Berski S (1996) Theochem 371:11CrossRefGoogle Scholar
  19. 19.
    Ruiz E, Salahub DR, Vela A (1996) J Phys Chem 100:12265CrossRefGoogle Scholar
  20. 20.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108CrossRefGoogle Scholar
  21. 21.
    Bürger H (1997) Angew Chem Int Ed Engl 36:718CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Zhao CY, You XZ (1997) J Phys Chem A 101:2879CrossRefGoogle Scholar
  23. 23.
    Alkorta I, Rozas I, Elguero J (1998) J Phys Chem A 102:9278CrossRefGoogle Scholar
  24. 24.
    Amico V, Meille SV, Corradi E, Messina MT, Resnati G (1998) J Am Chem Soc 120:8261CrossRefGoogle Scholar
  25. 25.
    Farina A, Meille SV, Messina MT, Metrangolo P, Resnati G, Vecchio G (1999) Angew Chem Int Ed Engl 38:2433CrossRefGoogle Scholar
  26. 26.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782CrossRefGoogle Scholar
  27. 27.
    Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617CrossRefGoogle Scholar
  28. 28.
    Karpfen A (2000) J Phys Chem A 104:6871CrossRefGoogle Scholar
  29. 29.
    Walsh RB, Clifford W, Padgett CW, Metrangolo P, Resnati G, Hanks TW, Pennington WT (2001) Cryst Growth Des 1:165CrossRefGoogle Scholar
  30. 30.
    Metrangolo P, Resnati G (2001) Chem Eur J 7:2511 and references thereinCrossRefGoogle Scholar
  31. 31.
    Romaniello P, Lelj F (2002) J Phys Chem A 106:9114CrossRefGoogle Scholar
  32. 32.
    Nangia A (2002) Cryst Eng Comm 17:1Google Scholar
  33. 33.
    Burton DD, Fontana F, Metrangolo P, Pilatid T, Resnati G (2003) Tetrahedron Lett 44:645CrossRefGoogle Scholar
  34. 34.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789CrossRefGoogle Scholar
  35. 35.
    Battistutta R, Mazzorana M, Sarno S, Kazimierczuk Z, Zanotti G, Pinna LA (2005) Chem Biol 12:1211CrossRefGoogle Scholar
  36. 36.
    Ghosh M, Meerts IATM, Cook A, Bergman A, Brouwer A, Johnson LN (2000) Acta Crystallogr Sect D Biol Crystallogr 56:1085CrossRefGoogle Scholar
  37. 37.
    Himmel DM, Das K, Clark AD, Hughes SH, Benjahad A, Oumouch S, Guillemont J, Coupa S, Poncelet A, Csoka I, Meyer C, Andries K, Nguyen CH, Grierson DS, Arnold E (2005) J Med Chem 48:7582CrossRefGoogle Scholar
  38. 38.
    Jiang Y, Alcaraz AA, Chen JM, Kobayashi H, Lu YJ, Snyder JP (2006) J Med Chem 49:1891CrossRefGoogle Scholar
  39. 39.
    López-Rodríguez ML, Murcia M, Benhamu B, Viso A, Campillo M, Pardo L (2002) J Med Chem 45:4806CrossRefGoogle Scholar
  40. 40.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386 and references thereinCrossRefGoogle Scholar
  41. 41.
    Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) J Polym Sci Part A Polym Chem 45:1 and references thereinCrossRefGoogle Scholar
  42. 42.
    Metrangolo P, Pilati T, Resnati G (2006) Cryst Eng Commun 8:946Google Scholar
  43. 43.
    Wang WZ, Wong NB, Zheng WX, Tian AM (2004) J Phys Chem A 108:1799CrossRefGoogle Scholar
  44. 44.
    Zou JW, Jiang YJ, Guo M, Hu GX, Zhang B, Liu HC, Yu QS (2005) Chem Eur J 11:740CrossRefGoogle Scholar
  45. 45.
    Wang WZ, Tian AM, Wong NB (2005) J Phys Chem A 109:8035CrossRefGoogle Scholar
  46. 46.
    Riley KE, Merz KM (2007) J Phys Chem A 111:1688CrossRefGoogle Scholar
  47. 47.
    Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS (2007) J Phys Chem A 111:10781CrossRefGoogle Scholar
  48. 48.
    Liantonio R, Luzzati S, Metrangolo P, Pilati T, Resnati G (2002) Tetrahedron 58:4023CrossRefGoogle Scholar
  49. 49.
    Fox DB, Liantonio R, Metrangolo P, Pilati T, Resnati G (2004) J Fluor Chem 125:271CrossRefGoogle Scholar
  50. 50.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305CrossRefGoogle Scholar
  51. 51.
    Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen bonding in crystal engineering. In: Metrangolo P, Resnati G (eds) Halogen bonding: fundamentals and applications. Springer, Berlin/Heidelberg, pp 105–136CrossRefGoogle Scholar
  52. 52.
    Grabowski SJ, Bilewicz E (2006) Chem Phys Lett 427:51CrossRefGoogle Scholar
  53. 53.
    Palusiak M, Grabowski SJ (2008) Struct Chem 19:5CrossRefGoogle Scholar
  54. 54.
    Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) J Phys Chem A 112:10856CrossRefGoogle Scholar
  55. 55.
    Bilewicz E, Rybarczyk-Pirek AJ, Dubis AT, Grabowski SJ (2007) J Mol Struct 829:208CrossRefGoogle Scholar
  56. 56.
    Lankau TM, Wu YC, Zou JW, Yu CH (2008) J Theoret Comput Chem 7:13CrossRefGoogle Scholar
  57. 57.
    Yunxiang L, Jianwei Z, Hongqing W, Qingsen Y, Huaxin Z, Yongjun J (2005) J Phys Chem A 109:11956CrossRefGoogle Scholar
  58. 58.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  59. 59.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265CrossRefGoogle Scholar
  60. 60.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364CrossRefGoogle Scholar
  61. 61.
    Dunning TH (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  62. 62.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski, J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) In: Gaussian-03 (ed) Gaussian-03. Gaussian, Inc., Wallingford CTGoogle Scholar
  63. 63.
    Dunning TH (2000) J Phys Chem A 104:9062CrossRefGoogle Scholar
  64. 64.
    Bene JED, Shavitt I (1997) In: Scheiner S (ed) Molecular interactions: from Van der Waals to strongly bound complexes. Wiley, Sussex, p 157Google Scholar
  65. 65.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  66. 66.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  67. 67.
    Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317CrossRefGoogle Scholar
  68. 68.
    Popelier PLA with a contribution from Bone RGA (1999) In: 0.2 (ed) MORPHY98, a topological analysis program. UMIST, EnglandGoogle Scholar
  69. 69.
    Alkorta I, Picazo O (2005) ARKIVOC ix:305Google Scholar
  70. 70.
    Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor acceptor perspective. Cambridge Press, CambridgeGoogle Scholar
  71. 71.
    Glendening GE, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2004) NBO 5.G. Theoretical Chemistry Institute, University of Wisconsin, Madison, WIGoogle Scholar
  72. 72.
    Glendening ED (1996) J Am Chem Soc 118:2473CrossRefGoogle Scholar
  73. 73.
    Glendening ED (2005) J Phys Chem A 109:11936CrossRefGoogle Scholar
  74. 74.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) Gamess Version 11. J Comput Chem 14:1347Google Scholar
  75. 75.
    Lide DR (ed) (2004) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton, FLGoogle Scholar
  76. 76.
    Davis RE, Muenter JS (1972) J Chem Phys 57:2836CrossRefGoogle Scholar
  77. 77.
    Nair KPR, Hoeft J, Tiemann E (1979) J Mol Spectrosc 78:506CrossRefGoogle Scholar
  78. 78.
    Nair KPR, Hoeft J, Tiemann E (1978) Chem Phys Lett 58:153CrossRefGoogle Scholar
  79. 79.
    Gajda R, Katrusiak A (2007) Acta Crystallogr Sect B B63:896 and references thereinCrossRefGoogle Scholar
  80. 80.
    Desiraju G (1989) Crystal engineering. The design of organic solids. Elsevier, Amsterdam, p 178Google Scholar
  81. 81.
  82. 82.
    Provasi PF, Aucar GA, Sánchez M, Alkorta I, Elguero J, Sauer SPA (2005) J Phys Chem A 109:6555CrossRefGoogle Scholar
  83. 83.
    Sánchez M, Provasi PF, Aucar GA, Alkorta I, Elguero J (2005) J Phys Chem B 109:18189CrossRefGoogle Scholar
  84. 84.
    Chen YF, Dannenberg JJ (2006) J Am Chem Soc 128:8100CrossRefGoogle Scholar
  85. 85.
    Alkorta I, Elguero J, Solimannejad M (2008) J Chem Phys 129:064115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Instituto de Química Médica (CSIC)MadridSpain

Personalised recommendations