Structural Chemistry

, Volume 19, Issue 6, pp 923–933 | Cite as

Hydrogen bonds and ionic interactions in Guanidine/Guanidinium complexes: a computational case study

Original Research

Abstract

It is frequently said that hydrogen bonds (HBs) are enhanced by ionic interactions and in this article we intend to determine the degree at which this reinforcement happens. Considering our interest in the Guanidine(neutral)/Guanidinium(cation) system and its particular nature, all the possible 1:1 complexes with the Chloride(anion)/Hydrochloric acid(neutral) system have been studied at different levels of computation (B3LYP with 6-31+G* and TZVP basis sets; MP2 with 6-31+G*, 6-311++G** and aug-cc-pVDZ basis sets; CBS-QB3 and G3MP2). The nature of these interactions established in all the systems and, when possible, at all the levels of computation used in this study, has been analyzed using Atoms in Molecules and Natural Bond Orbital methodologies. By examining the interaction energy, the electron density at the bond critical bonds, the atomic energy, the charge transfer, the orbital energy, and the deformation energy we can conclude that HBs are stronger when the ionic interaction is stronger. Thus, both interactions do not work in an independent manner but one reinforces the other to different degrees depending on the nature of the charges present. Several correlations with the interaction energy have been found and a partition of the contributions of both the HB and ionic forces to the total interactions is proposed.

Keywords

Guanidinium Ab initio Hydrogen bonds Ionic interaction DFT AIM NBO 

References

  1. 1.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909. doi:10.1021/ja00082a011 CrossRefGoogle Scholar
  2. 2.
    Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) J Am Chem Soc 126:3845. doi:10.1021/ja030213z CrossRefGoogle Scholar
  3. 3.
    Gilli G, Gilli P (2000) J Mol Struct 552:1. doi:10.1016/S0022-2860(00)00454-3 CrossRefGoogle Scholar
  4. 4.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) J Am Chem Soc 122:10405. doi:10.1021/ja000921+ CrossRefGoogle Scholar
  5. 5.
    Gilli P, Bertolasi V, Pretto L, Lyčka A, Gilli G (2002) J Am Chem Soc 124:13554. doi:10.1021/ja020589x CrossRefGoogle Scholar
  6. 6.
    Braga D, Rubini K, Maini L (2004) Cryst Eng Comm 6:236. doi:10.1039/b409904b Google Scholar
  7. 7.
    Ferretti V, Bertolasi V, Pretto L (2004) N J Chem 26:646. doi:10.1039/b314143h CrossRefGoogle Scholar
  8. 8.
    Mascal M, Marjo CE, Blake AJ (2000) Chem Commun (Camb) 1591. doi:10.1039/b002361m
  9. 9.
    Braga D, Maini L, Grepioni F, De Cian A, Felix O, Fischer J et al (2000) N J Chem 24:547. doi:10.1039/b002061n CrossRefGoogle Scholar
  10. 10.
    Braga D, Angelino A, Tagliavini E, Grepioni F (1998) J Chem Soc Dalton Trans 1961. doi:10.1039/a800914g
  11. 11.
    Braga D, Grepioni F (1997) Acc Chem Res 30:81. doi:10.1021/ar9602009 CrossRefGoogle Scholar
  12. 12.
    Tsoucaris G (ed) (1998) Current challenges on large supramolecular assemblies. Kluwer, DordrechtGoogle Scholar
  13. 13.
    Brammer L, Swearingen JK, Bruton EA, Sherwood P (2002) Proc Natl Acad Sci USA 99:4956. doi:10.1073/pnas.072623399 CrossRefGoogle Scholar
  14. 14.
    Lee SO, Shacklady DM, Horner MJ, Ferlay S, Hosseini MW, Ward MD (2005) Cryst Growth Des 5:995. doi:10.1021/cg049660w CrossRefGoogle Scholar
  15. 15.
    Son SU, Reingold JA, Carpenter GB, Czech PT, Sweigart DA (2006) Organometallics 25:5276. doi:10.1021/om0604425 CrossRefGoogle Scholar
  16. 16.
    Pakiari AH, Eskandari K (2006) J Mol Struct Theochem 759:51. doi:10.1016/j.theochem.2005.10.040 CrossRefGoogle Scholar
  17. 17.
    Recommendation from IUPAC Task Group 2004-026-2-100. May 2007. E. Arunan personal communicationGoogle Scholar
  18. 18.
    Meot-Ner M (2005) Chem Rev 105:213. doi:10.1021/cr9411785 CrossRefGoogle Scholar
  19. 19.
    Mayer I, Lukovits I, Radnai T (1992) Chem Phys Lett 188:595. doi:10.1016/0009-2614(92)80872-9 CrossRefGoogle Scholar
  20. 20.
    Levy JB (1998) Struct Chem 9:179. doi:10.1023/A:1022466913479 CrossRefGoogle Scholar
  21. 21.
    Ayotte P, Nielsen SB, Weddle GH, Johnson MA, Xantheas SS (1999) J Phys Chem A 103:10665. doi:10.1021/jp991963r CrossRefGoogle Scholar
  22. 22.
    Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky PJ, Xantheas SS, Colson SD, Laufer AH, Ray D, Barbara PF, Bartels DM, Becker KH, Bowen H, Bradforth SE, Carmichael I, Coe JV, Corrales LR, Cowin JP, Dupuis M, Eisenthal KB, Franz JA, Gutowski MS, Jordan KD, Kay BD, LaVerne JA, Lymar SV, Madey TE, McCurdy CW, Meisel D, Mukamel S, Nilsson AR, Orlando TM, Petrik NG, Pimblott SM, Rustad JR, Schenter GK, Singer SJ, Tokmakoff A, Wang LS, Wittig C, Zwier TS (2005) Chem Rev 105:355. doi:10.1021/cr030453x Google Scholar
  23. 23.
    Chen Y, Kortemme T, Robertson T, Baker D, Varani G (2004) Nucleic Acids Res 32:5147. doi:10.1093/nar/gkh785 CrossRefGoogle Scholar
  24. 24.
    Félix O, Hosseini MW, De Cian A, Fischer J (1997) Angew Chem Int Ed Engl 36:102. doi:10.1002/anie.199701021 CrossRefGoogle Scholar
  25. 25.
    Kim S, Schaefer HF III (2007) J Phys Chem A 111:10381. doi:10.1021/jp072727g CrossRefGoogle Scholar
  26. 26.
    Kim S, Schaefer HF III (2007) J Chem Phys 125:144305. doi:10.1063/1.2356464 CrossRefGoogle Scholar
  27. 27.
    Botschwina P, Oswald R, Dyczmons V (2007) Int J Mass Spectrom 267:308. doi:10.1016/j.ijms.2007.02.057 CrossRefGoogle Scholar
  28. 28.
    Russell VA, Etter MC, Ward MD (1994) Chem Mater 6:1206. doi:10.1021/cm00044a019 CrossRefGoogle Scholar
  29. 29.
    Rozas I, Kruger PE (2005) J Chem Theory Comput 1:1055. doi:10.1021/ct050009x CrossRefGoogle Scholar
  30. 30.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University, New YorkGoogle Scholar
  31. 31.
    Bieger-Konig FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317. doi:10.1002/jcc.540030306 CrossRefGoogle Scholar
  32. 32.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899. doi:10.1021/cr00088a005 CrossRefGoogle Scholar
  33. 33.
    Weinhold F, Carpenter JE (1988) In: Naaman R, Vager Z (eds) The structure of small molecules, NBO version 3.1, Plenum, New YorkGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  35. 35.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213. doi:10.1007/BF00533485 CrossRefGoogle Scholar
  36. 36.
    Hariharan PC, Pople JA (1974) Mol Phys 27:209. doi:10.1080/00268977400100171 CrossRefGoogle Scholar
  37. 37.
    Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829. doi:10.1063/1.467146 CrossRefGoogle Scholar
  38. 38.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503. doi:10.1016/0009-2614(88)85250-3 CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275. doi:10.1016/0009-2614(90)80029-D CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281. doi:10.1016/0009-2614(90)80030-H CrossRefGoogle Scholar
  41. 41.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650. doi:10.1063/1.438955 CrossRefGoogle Scholar
  42. 42.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358. doi:10.1063/1.464303 CrossRefGoogle Scholar
  43. 43.
    Dunning TH Jr (1989) J Chem Phys 90:1007. doi:10.1063/1.456153 CrossRefGoogle Scholar
  44. 44.
    Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532. doi:10.1063/1.481224 CrossRefGoogle Scholar
  45. 45.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703. doi:10.1063/1.478385 CrossRefGoogle Scholar
  46. 46.
    Boys SB, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561 CrossRefGoogle Scholar
  47. 47.
    Alkorta I, Picazo O (2005) Arkivoc ix:305Google Scholar
  48. 48.
    Koskinen JT (1998) Z Naturforsch B Chem Sci 53:386Google Scholar
  49. 49.
    Aue DH, Bowers MT (1979) In: Bowers MT (ed) Gas phase chemistry, vol 2, chap 9. Academic Press, New YorkGoogle Scholar
  50. 50.
    Bondi A (1964) J Phys Chem 68:441. doi:10.1021/j100785a001 CrossRefGoogle Scholar
  51. 51.
    Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163. doi:10.1039/a827163z CrossRefGoogle Scholar
  52. 52.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154. doi:10.1021/ja0017864 CrossRefGoogle Scholar
  53. 53.
    Alkorta I, Rozas I, Elguero J (1998) Struct Chem 9:243. doi:10.1023/A:1022424228462 CrossRefGoogle Scholar
  54. 54.
    Alkorta I, Barrios L, Rozas I, Elguero J (2000) J Mol Struct Theochem 496:131. doi:10.1016/S0166-1280(99)00177-3 CrossRefGoogle Scholar
  55. 55.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529. doi:10.1063/1.1501133 CrossRefGoogle Scholar
  56. 56.
    Rozas I, Alkorta I, Elguero J (1998) J Phys Chem A 48:102Google Scholar
  57. 57.
    Wiberg KB, Rablen PR (1993) J Comput Chem 14:1504. doi:10.1002/jcc.540141213 CrossRefGoogle Scholar
  58. 58.
    Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor–aceptor perspective. Cambridge Press, Cambridge, p 611Google Scholar
  59. 59.
    Rozas I, Alkorta I, Elguero J (2004) J Phys Chem B 108:3335. doi:10.1021/jp036901m CrossRefGoogle Scholar
  60. 60.
    Rozas I, Alkorta I, Elguero J (2005) Org Biomol Chem 3:366. doi:10.1039/b415768k CrossRefGoogle Scholar
  61. 61.
    McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. IUPAC, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Chemistry, Trinity CollegeUniversity of DublinDublin 2Ireland, UK
  2. 2.Instituto de Quimica Medica, CSICMadridSpain

Personalised recommendations