Structural Chemistry

, Volume 19, Issue 2, pp 339–352 | Cite as

Substitution effects on neutral and protonated pyridine derivatives along the periodic table

  • Fernando Blanco
  • Daniel H. O’ Donovan
  • Ibon Alkorta
  • José Elguero
Original Research

Abstract

A theoretical study of the monosubstitution effects of all atoms of the second and third rows of the periodic table on the α, β and γ positions of neutral and protonated pyridine has been carried out by means of B3LYP/6-31 + G(d,p) DFT calculations. The geometric and electronic properties, calculated using the Atoms in Molecules methodology, and the electrostatic potential have been analysed. Concurrently, three separate aromaticity indexes (NICS(0), NICS(1) and HOMA) have been evaluated and compared to the above results. Furthermore, the effect of protonation on these parameters has been investigated. A comparison with analogous results for benzene derivatives has also been carried out.

Keywords

Pyridine Protonation Substituent effects Electrostatic potential Atom in molecules 

References

  1. 1.
    Zborowski K, Alkorta I, Elguero J (2007) Struct Chem 18:797CrossRefGoogle Scholar
  2. 2.
    Blanco F, Alkorta I, Zborowski K, Elguero J (2007) Struct Chem 18:965CrossRefGoogle Scholar
  3. 3.
    Mó O, Yañez M, Llamas-Saiz AL, Foces-Foces C, Elguero J (1995) Tetrahedron 51:7045CrossRefGoogle Scholar
  4. 4.
    Begtrup M, Balle T, Claramunt RM, Sanz D, Jimenez JA, Mó O, Yañez M, Elguero J (1998) Theochem J Mol Struct 453:255CrossRefGoogle Scholar
  5. 5.
    Alkorta I, Elguero J (2005) Heteroatom Chem 16:628CrossRefGoogle Scholar
  6. 6.
    Albert A (1968) Heterocyclic chemistry. Athlone Press, LondonGoogle Scholar
  7. 7.
    Elguero J (1984) In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry. Pergamon Press, OxfordGoogle Scholar
  8. 8.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  9. 9.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  10. 10.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  11. 11.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian-03. Gaussian, Inc., Wallingford, CTGoogle Scholar
  12. 12.
    Bader RFW (1990) Atoms in molecules: a quantum theory. The International Series of Monographs of Chemistry. Clarendon Press, OxfordGoogle Scholar
  13. 13.
    Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317CrossRefGoogle Scholar
  14. 14.
    Popelier PLA, with a contribution from R.G.A. Bone (UMIST,Engl,EU) MORPHY98, a topological analysis program, 1999Google Scholar
  15. 15.
    Alkorta I, Picazo O (2005) ARKIVOC ix:305Google Scholar
  16. 16.
    Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor- aceptor perspective. Cambridge Press, CambridgeGoogle Scholar
  17. 17.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F, NBO Version 3.1Google Scholar
  18. 18.
    Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkGoogle Scholar
  19. 19.
    Alkorta I, Villar HO, Arteca GA (1993) J Comput Chem 14:530CrossRefGoogle Scholar
  20. 20.
    Solimannejad M, Alkorta I, Elguero J (2007) J Phys Chem A 111:2077CrossRefGoogle Scholar
  21. 21.
    Alkorta I, Bachs M, Perez JJ (1994) Chem Phys Lett 224:160CrossRefGoogle Scholar
  22. 22.
    Alkorta I, Villar HO, Perez JJ (1993) J Phys Chem 97:9113CrossRefGoogle Scholar
  23. 23.
    Murray JS, Ken K (1996) Molecular electrostatic potentials, theoretical and computational chemistry. Elsevier, New YorkGoogle Scholar
  24. 24.
    Krygowski TM (1993) J Chem Inf Comput Sci 33:70Google Scholar
  25. 25.
    Schleyer PvR, Maerker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) J Am Chem Soc 118:6317CrossRefGoogle Scholar
  26. 26.
    Schleyer PVR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes NJRV (2001) Org Lett 3:2465CrossRefGoogle Scholar
  27. 27.
    Mata F, Quintana MJ, Sorensen GO (1977) J Mol Struct 42:1CrossRefGoogle Scholar
  28. 28.
    Wörmke S, Brendel K, Andresen U, Mäder H (2004) Mol Phys 102:1625CrossRefGoogle Scholar
  29. 29.
    CSD database version 5.28 (November 2006). Jan-07 and May-07 updatesGoogle Scholar
  30. 30.
    Kenny PW (1994) J Chem Soc. Perkin Trans 2:199Google Scholar
  31. 31.
    Tomasi J (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkGoogle Scholar
  32. 32.
    Hansch C, Leo A, Howkman D (1995) Exploring QSAR. American Chemical SocietyGoogle Scholar
  33. 33.
    Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:9457CrossRefGoogle Scholar
  34. 34.
    Alkorta I, Elguero J (2003) Chem Phys Lett 381:505CrossRefGoogle Scholar
  35. 35.
    Pauling L (1945) The nature of chemical bond. Cornell University Press, Ithaca, NYGoogle Scholar
  36. 36.
    Howard ST, Krygowski TM (1997) Can J Chem 75:1174CrossRefGoogle Scholar
  37. 37.
    Jaffe HH, Doak GO (1955) J Am Chem Soc 77:4441CrossRefGoogle Scholar
  38. 38.
    Bryson A (1960) J Am Chem Soc 82:4871CrossRefGoogle Scholar
  39. 39.
    Barlin GB (1964) J Chem Soc 2150Google Scholar
  40. 40.
    Fischer A, Galloway WJ, Vaughan J (1964) J Chem Soc 3591Google Scholar
  41. 41.
    Brown HC, Cahn A (1950) J Am Chem Soc 72:2939CrossRefGoogle Scholar
  42. 42.
    Brown HC, Kanner B (1953) J Am Chem Soc 75:3865CrossRefGoogle Scholar
  43. 43.
    Brown HC, Mihm XR (1955) J Am Chem Soc 77:1723CrossRefGoogle Scholar
  44. 44.
    McDaniel DH, Brown HC (1955) J Am Chem Soc 77:3756CrossRefGoogle Scholar
  45. 45.
    Charton M (1964) J Am Chem Soc 86:2033CrossRefGoogle Scholar
  46. 46.
    Brown HC, Kanner B (1966) J Am Chem Soc 88:986CrossRefGoogle Scholar
  47. 47.
    Grandberg II, Faizova GK, Kost AN (1967) Chem Heterocycl Comp 2:421CrossRefGoogle Scholar
  48. 48.
    McDaniel DH, Ozcan M (1968) J Org Chem 33:1922CrossRefGoogle Scholar
  49. 49.
    Joris L, von Rague Schleyer P (1968) Tetrahedron 24:5991CrossRefGoogle Scholar
  50. 50.
    Catalan J, Mo O, Perez P, Yanez M (1979) J Am Chem Soc 101:6520CrossRefGoogle Scholar
  51. 51.
    Abboud JLM, Catalan J, Elguero J, Taft RW (1988) J Org Chem 53:1137CrossRefGoogle Scholar
  52. 52.
    Hillebrand C, Klessinger M, Eckert-Maksic M, Maksic ZB (1996) J Phys Chem 100:9698CrossRefGoogle Scholar
  53. 53.
    NIST-Chemistry-Webbook. http://webbook.nist.gov/chemistry/. Accessed June 2005
  54. 54.
    Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions Moscow, 1976Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fernando Blanco
    • 1
  • Daniel H. O’ Donovan
    • 2
  • Ibon Alkorta
    • 1
  • José Elguero
    • 1
  1. 1.Instituto de Química Médica (CSIC)MadridSpain
  2. 2.School of Chemistry, Trinity CollegeUniversity of DublinDublin 2Ireland

Personalised recommendations