Structural Chemistry

, Volume 18, Issue 6, pp 985–991

Energy transfer rates and impact sensitivities of two classes nitramine explosives molecules

  • Su-Hong Ge
  • Xin-Lu Cheng
  • Xin-Xing Wang
  • Guang-xing Dong
  • Gui-hua Sun
GE

Abstract

Some explosives are stable molecules with large energy barriers to chemical reaction, and in shock or impact initiation, a sizable amount of phonon energy must be converted to the molecular internal higher vibrations by multiphonon up pumping. To investigate the relationship between impact sensitivities and energy transfer rates, the number of doorway modes of explosive molecules is estimated by a simple theory in which the rate is proportional to the number of normal mode vibrations. We evaluated frequencies of normal mode vibrations of 13 explosive molecules which are CHNO nitramine-contained and have not been analyzed previously. The number of doorway modes in the regions of 200–700 cm−1 was evaluated by the direct counting method. For more clear investigation of the relationship we have classified these 13 nitramine explosive molecules, by the number of nitramine group they contained, into two groups. There are eight molecules that contained one nitramine group and five molecules that contained poly-nitramine groups. It is found that the number of doorway modes shows a linearly correlation to the impact sensitivities derived from drop hammer tests. This result is in agreement with that of several previous works. Besides, it is also noted in our study that in those nitramine explosives molecules with similar molecular structure (similar number nitramine group they contained) and similar molecular weight, the correlation between the sensitivity and the number of doorway modes is higher. We found that the vibrational frequency of ω corresponds to nitro group motions of every molecule is contributed to the number of doorway modes in the regions of 200–700 cm−1.

Keywords

Normal mode vibration Doorway region Impact sensitivities Nitramine explosive 

References

  1. 1.
    Ye S, Tonokura K, Koshi M (2003) Combust Flame 132:240CrossRefGoogle Scholar
  2. 2.
    Ishiguchi M, Yoshida M, Nakayama Y, and Matsumura T, Correlation between energy transfer rates and drop hammer sensitivities of some explosives http://www.icube-t.co.jp/isem2002/img/abstract.pdf
  3. 3.
    Dlott DD, Fayer MD (1990) J Chem Phys 92:3798CrossRefGoogle Scholar
  4. 4.
    Tokmakoff A, Fayer MD, Dlott DD (1993) J Phys Chem 97:1901CrossRefGoogle Scholar
  5. 5.
    Dlott DD, mai 1995, Journal de Physiqueiv Colloque C4, supplement and journal de physique III 5:C4–337Google Scholar
  6. 6.
    Kim H, Dlott DD (1990) J Chem Phys 93:1695CrossRefGoogle Scholar
  7. 7.
    Kim H, Dlott DD (1991) J Chem Phys 94:8203CrossRefGoogle Scholar
  8. 8.
    McNesby KL, Coffey CS (1997) J Phys Chem B 101:3097CrossRefGoogle Scholar
  9. 9.
    Fried LE, Ruggiero AJ (1994) J Phys Chem 98:9786CrossRefGoogle Scholar
  10. 10.
    Chapman DL (1899) Phil Mag 213:47Google Scholar
  11. 11.
    Davis WC (1981) Sei Am 256:106Google Scholar
  12. 12.
    Tarver CM (1982) Combust Flame 46:157CrossRefGoogle Scholar
  13. 13.
    Tarver C, Calef D, Jan–Feb 1988 I, Energy and Technolop Reoiew, Lawrence LivermoreTech. Rept. UCRL-52000-88-1.2Google Scholar
  14. 14.
    Zcl’dovich YB, Raizer YP (1966) Physics of shock waves and high- temperature hydrodynamic phenomena. Academic Press, New YorkGoogle Scholar
  15. 15.
    Califano S, Schettino V, Neto N (1981) Lottice dynamics of molecular crystals. Springer-Verlag, BerlinGoogle Scholar
  16. 16.
    Hess LA, Prasad PN (1980) J Chem Phys 72:573CrossRefGoogle Scholar
  17. 17.
    Delle Valle RG, Fracassi PF, Righini R, Califano S (1983) Chem Phys 74:179CrossRefGoogle Scholar
  18. 18.
    Righini R (1984) Chem Phys 84:97CrossRefGoogle Scholar
  19. 19.
    Wei TG, Wyatt RE (1990) J Phys Condens Matter 2:9787CrossRefGoogle Scholar
  20. 20.
    Dlott DD (1986) Annu Rev Phys Chem 37:157CrossRefGoogle Scholar
  21. 21.
    Labanowski JK, Andzelm JW 1991, Density functional methods in chemistry. Springer-Verlag, New YorkGoogle Scholar
  22. 22.
    Hohenberg H, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  23. 23.
    Koh W, Sham KJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  24. 24.
    Owens FJ (1996) Theochem 370:11CrossRefGoogle Scholar
  25. 25.
    Rice BM, Sahu S, Owens FJ (2002) Theochem 583:69CrossRefGoogle Scholar
  26. 26.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  28. 28.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  29. 29.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comp Chem 22:976CrossRefGoogle Scholar
  30. 30.
    Frisch MJ et al. GAUSSIAN 98, revision A.9, Gaussian, Inc, P.A. Pittsburgh, 1998Google Scholar
  31. 31.
    Chakraborty D, Muller P, Dasgupta S, Goddard WA (2001) J Phys Chem A 105:1302CrossRefGoogle Scholar
  32. 32.
    Bulusu SN (ed) (1990) Chemistry and physics of energetic materials. Kluwer Academic Publishers, Netherlands, p 623Google Scholar
  33. 33.
    Brill TB, Oyumi Y (1986) J Phys Chem 90:2697Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Su-Hong Ge
    • 1
    • 2
  • Xin-Lu Cheng
    • 1
  • Xin-Xing Wang
    • 2
  • Guang-xing Dong
    • 2
  • Gui-hua Sun
    • 2
  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.Department of PhysicsHexi UniversityZhangyeChina

Personalised recommendations