Structural Chemistry

, Volume 17, Issue 4, pp 439–444 | Cite as

The annular tautomerism of imidazoles and pyrazoles: The possible existence of nonaromatic forms

Original Paper

Abstract

DFT (B3LYP/6-31G*) and G3//B3LYP (usually referred as G3B3 in the literature) calculations have been carried out on annular tautomers of C- and/or N-functionalized imidazoles (both the aromatic 1H- and nonaromatic 2H-) and pyrazoles (the aromatic 1H- and 2H-, and nonaromatic 3H- and 4H-). The aromaticity of 1H-imidazole and 1H- and 2H-pyrazole results in these species being more stable than their nonaromatic tautomers. However, this stability is reversed when the hydrogen on the azole nitrogen or methylene carbon is substituted by OH or by F, e.g., in increasing order of stability we find 1-fluoro-1H-imidazole <2-fluoro-2H-imidazole (<2-fluoro-1H-imidazole). These results are related to a recent report of a highly substituted imidazole that exists in the “nonaromatic” 2H-tautomeric form, and discussed subsequently in a purely thermochemical context.

Keywords

DFT calculations Imidazoles Pyrazoles Tautomerism Aromaticity 

Notes

Acknowledgments

The authors would like to thank the DGI/MCyT of Spain for financial support (projects number BQU2003-01251 and SAF-2003-08003-C02-02). And also to the CTI (CSIC) and CESGA for allocation of computer time.

References

  1. 1.
    Elguero J, Marzin C, Katritzky AR, Linda P (1976) The Tautomerism of Heterocycles. Academic Press, New YorkGoogle Scholar
  2. 2.
    Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV (2000) Adv Heterocycl Chem 76:157CrossRefGoogle Scholar
  3. 3.
    Li GS, Ruiz-López MF, Zhang MS, Maigret B (1998) Theochem 422:197CrossRefGoogle Scholar
  4. 4.
    Claramunt RM, Santa María MD, Infantes L, Cano FH, Elguero J (2002) J Chem Soc, Perkin Trans 2 564Google Scholar
  5. 5.
    Hammadi AE, Mouhtadi ME (2000) Theochem 497:241CrossRefGoogle Scholar
  6. 6.
    Jaronczyk M, Dobrowolski JC Mazurek AP (2004) Theochem 673:17CrossRefGoogle Scholar
  7. 7.
    Catalán J, de Paz JLG, Elguero J (1996) J Chem Soc Perkin Trans 2:57Google Scholar
  8. 8.
    Tomás F, Abboud JLM, Laynez J, Notario R, Santos L, Nilsson SO, Catalán J, Claramunt RM, Elguero J (1989) J Am Chem Soc 111:7348CrossRefGoogle Scholar
  9. 9.
    Oziminski WP, Dobrowolski JC, Mazurek AP (2003) J Mol Struct 651–653:697CrossRefGoogle Scholar
  10. 10.
    Sorescu DC, Bennett CM, Thompson DL (1998) J Phys Chem A 102:10348CrossRefGoogle Scholar
  11. 11.
    Alkorta I, Elguero J (2001) J Heterocycl Chem 38:1387CrossRefGoogle Scholar
  12. 12.
    Trifonov RE, Alkorta I, Ostrovskii VA, Elguero J (2004) Theochem 668:123CrossRefGoogle Scholar
  13. 13.
    de la Hoz A, Sánchez-Migallón A, Mateo MC, Prieto P, Infantes L, Elguero J (2005) Struct Chem 16:485CrossRefGoogle Scholar
  14. 14.
    Liebman JF (2006) Struct Chem 17: in press (DOI:10:1007/s11224-006-9009-1)Google Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision C.02, Inc., Pittsburgh, PAGoogle Scholar
  16. 16.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  17. 17.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  19. 19.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764CrossRefGoogle Scholar
  20. 20.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650CrossRefGoogle Scholar
  21. 21.
    Anantharaman B, Melius CF (2005) J Phys Chem A 109:1734CrossRefGoogle Scholar
  22. 22.
    Schleyer PvR (guest editor) (2001) Aromaticity. Chem Rev 101(5)Google Scholar
  23. 23.
    Schleyer PvR (guest editor) (2005) Delocalization–Pi and Sigma. Chem Rev 105(10)Google Scholar
  24. 24.
    Chern Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842CrossRefGoogle Scholar
  25. 25.
    Taft RW, Anvia F, Taagepera M, Catalán J, Elguero J (1986) J Am Chem Soc 108:3237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Instituto de Química Médica (C.S.I.C.)MadridSpain
  2. 2.Department of Chemistry and BiochemistryUniversity of Maryland, Baltimore CountyBaltimoreUSAe-mail: jliebman@umbc.edu

Personalised recommendations