Advertisement

Structural Chemistry

, Volume 17, Issue 4, pp 359–366 | Cite as

Structural studies of spiroarsoranes derived from 2-aminophenols

  • Francisco Pérez-García
  • Antonio R. Tapia-Benavides
  • Hugo Tlahuext
  • Alejandro Álvarez
  • Margarita TlahuextlEmail author
Original Paper

Abstract

This paper describes the structural studies of 2-phenyl-9,9′-dimethyl-2,2′-spirobis(1,3,2-λ5-benzoxazarsoline) 5, 2-phenyl-8,8′-dimethyl-2,2′-spirobis(1,3,2-λ5-benzoxazarsoline) 6 by 1H,13C,15N NMR in [2H6]DMSO and CDCl3. The solid state studies were made by X-ray experiments. Infrared spectroscopy was obtained in CDCl3 and the vibrational signals were assigned using DFT calculations. The nature of the As–N, As–C and As–O bonds in these compounds was established by NBO studies.

Keywords

Spiroarsoranes NMR X-ray Infrared DFT NBO 

Notes

Acknowledgements

This work was supported by CONACyT-MÉXICO (J33279-E). F.P.–G. thanks CONACyT-MÉXICO for scholarships.

References

  1. 1.
    Day RO, Holmes JM, Sau AC, Devillers JR, Holmes RR, Deiters JA (1982) J Am Chem Soc 104:2127CrossRefGoogle Scholar
  2. 2.
    Wunderlich H (1980) Acta Cryst B36:1492Google Scholar
  3. 3.
    Holmes RR, Day RO, Sau AC (1985) Organometallics 4:714CrossRefGoogle Scholar
  4. 4.
    Tlahuextl M, Martínez-Martínez FJ, Rosales-Hoz M, Contreras R (1997) Phosphor Sulf Silicon 123:5Google Scholar
  5. 5.
    Wasada H, Hirao K (1992) J Am Chem Soc 114:16CrossRefGoogle Scholar
  6. 6.
    Hernández-Díaz J, Contreras R, Wrackmeyer B (2000) Heteroatom Chem 11: 11CrossRefGoogle Scholar
  7. 7.
    Meunier PF, Day RO, Devillers JR, Holmes RR (1978) Inorg Chem 17:3270CrossRefGoogle Scholar
  8. 8.
    Tlahuextl M, Aguilar-Castro L, Camacho-Camacho C, Contreras R, Tapia-Benavides AR (2004) Heteroatom Chem 15:114CrossRefGoogle Scholar
  9. 9.
    Gellman, SH, Adams BR, Dado GP (1990) J Am Chem Soc 112: 460CrossRefGoogle Scholar
  10. 10.
    Gelman SH, Dado GP, Liandg G, Adams BR (1991) J Am Chem Soc 113:1164CrossRefGoogle Scholar
  11. 11.
    Neidlein R, Buseck S (1992) Helv Chim Acta 75:2520CrossRefGoogle Scholar
  12. 12.
    Padilla-Martínez II, Andrade-López N, Gama-Goicochea M, Aguilar-Cruz E, Cruz A, Contreras R (1996) Heteroatom Chem 7:323CrossRefGoogle Scholar
  13. 13.
    Tlahuextl M, Tapia-Benavides AR, Flores-Parra A, Contreras R, Tlahuext H, Cruz EM (2005) Heteroatom Chem 16:513Google Scholar
  14. 14.
    Holmes RR, Deiters JA (1977) J Am Chem Soc 99:3318CrossRefGoogle Scholar
  15. 15.
    Muetterties EL, Guggenberger LJ (1974) J Am Chem Soc 96:1748CrossRefGoogle Scholar
  16. 16.
    Toyota A, Oki M (1992) Bull Chem Soc Jpn 65:1832CrossRefGoogle Scholar
  17. 17.
    Matano Y, Nomura H, Suzuki H, Shiro M, Nakano H (2001) J Am Chem Soc 123:10954CrossRefGoogle Scholar
  18. 18.
    Krannich LK, Thewalt U, Cook WJ, Jain SR, Sisler HH (1973) Inorg Chem 12:2304CrossRefGoogle Scholar
  19. 19.
    Ahlemann JT, Künzel A, Roesky HW, Noltemeyer M, Markovskii L, Schmidt HG (1996) Inorg Chem 35:6644CrossRefGoogle Scholar
  20. 20.
    Karaghiosoff K, Klapötke TM, Krumm B, Nöth H, Schütt T, Suter M (2002) Inorg Chem 41:170CrossRefGoogle Scholar
  21. 21.
    Jensen JO (2004) J Mol Struct (Theochem) 678:195CrossRefGoogle Scholar
  22. 22.
    Lai C-H, Su M-D, Chu S-Y (2002) Polyhedron 21:579CrossRefGoogle Scholar
  23. 23.
    Huheey JE (1993) Inorganic chemistry, 4th edn. Harper Collins, New YorkGoogle Scholar
  24. 24.
    Kolandaivel P, Nirmala V (2004) J Mol Struct 694:33CrossRefGoogle Scholar
  25. 25.
    Wojtulewski S, Grabowski SJ (2005) Chem Phys 309:183CrossRefGoogle Scholar
  26. 26.
    Bruker Analytical X-Ray Systems (1997–98) SMART: Bruker Molecular Analysis Research Tool V. 5. 057 cGoogle Scholar
  27. 27.
    Bruker analytical X-Ray systems (1999) SAINT + NT Version 6.01Google Scholar
  28. 28.
    International Tables for X-ray Crystallography, vol IV, Kynoch Press, Birmingham 1974Google Scholar
  29. 29.
    Bruker Analytical X-ray Systems. SHELXTL-NT Version 5.10 1999Google Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T,Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A.11, Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  31. 31.
    Scott AP, Radom L (1996) J Phys Chem 100:16502CrossRefGoogle Scholar
  32. 32.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (2003) NBO (Version 3.1) Gaussian Inc, Pittsburg, PAGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Francisco Pérez-García
    • 1
  • Antonio R. Tapia-Benavides
    • 1
  • Hugo Tlahuext
    • 2
  • Alejandro Álvarez
    • 1
  • Margarita Tlahuextl
    • 1
    Email author
  1. 1.Centro de Investigaciones QuímicasUniversidad A. del Estado de HidalgoPachuca, HidalgoMéxico
  2. 2.Centro de Investigaciones QuímicasUniversidad A. del Estado de Morelos, CuernavacaMorelosMéxico

Personalised recommendations