Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Density functional study of the l-proline-catalyzed α-aminoxylation of aldehydes reaction: The reaction mechanism and selectivity

Abstract

The reaction mechanism of the l-proline-catalyzed α-aminoxylation reaction between aldehyde and nitrosobenzene has been investigated using density functional theory (DFT) calculation. Our calculation results reveal following conclusions [1]. The first step that corresponds to the formation of C–O bond, is the stereocontrolling and rate-determining step [2]. Among four reaction channels, the syn-attack reaction channel is more favorable than that of the anti one, and the TS-ss channel dominates among the four channels for this reaction in the step of C–O bond formation [3]. The intermolecular hydrogen bond between the acidic hydrogen of l-proline and the N atom of the nitrosobenzene in an early stage of the process catalyzes very effectively the C–O bond formation by a large stabilization of the negative charge that is developing at the O atom along the electrophilic attack [4]. The effect of solvent decreases the activation energy, and also, the calculated energy barriers are decrease with the enhancement of dielectric constants for C–O bond formation step. These results are in good agreement with experiment, and allow us to explain the origin of the catalysis and stereoselectivity for l-proline-catalyzed α-aminoxylation of aldehyde reaction. The addition of H2O to substituted imine proline, intermolecular proton-transfer steps, and the l-proline elimination process were also studied in this paper.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hasserodt JS (1999) 12:2007

  2. 1b.

    Stevenson JD, Thomas NR (2000) Nat Prod Rep 17:535

  3. 1c.

    Thomas NR (1996) Nat Prod Rep 13:479

  4. 1d.

    Koeller KM, Wong CH (2001) Nature 409:232

  5. 2.

    Walsh C (2001) Nature 409:226

  6. 3.

    Kandasamy S, Notz W, Bui T, Barbas CF, III (2001) J Am Chem Soc 123:5260

  7. 3b.

    Cordova A, Notz W, Barbas CF, III (2002) J Org Chem 67:301

  8. 4.

    Ahrendt KA, Borths CJ, MacMillan DWC (2000) J Am Chem Soc 122:4243

  9. 4b.

    Edwin B, Patrik K, Dieter F, Hellmut G, Herbert W (1999) Eur J Org Chem xx:329

  10. 5.

    Jen WS, Wiener JJM, MacMillan DWC (2000) J Am Chem Soc 122:9874

  11. 5b.

    Waldemar A, Aimin Z (2003) Eur J Org Chem xx:587

  12. 6.

    Hajos ZG, Parrish DR (1973) J Org Chem 38:3239

  13. 6b.

    Hajos ZG, Parrish DR (1974) J Org Chem 39:1615

  14. 7.

    Eder U, Sauer G, Wiechert R (1971) Angew Chem Int Ed Engl 10:496

  15. 8.

    List B, Lerner RAC, Barbas F (2000) J Am Chem Soc 122:2395

  16. 9.

    Notz W, List B (2000) J Am Chem Soc 122:7386

  17. 9b.

    List B, Pojarliev P, Castello C (2001) Org Lett 3:573

  18. 10.

    List B, Shabat D, Zhong G, Turner J, Li MA, Bui T, Anderson J, Lerner RA, Barbas CF (1999) J Am Chem Soc 121:7283

  19. 10b.

    Sinha SC, Sun J, Miller G, Barbas CF, Lerner RA (1999) Org Lett 1:1623

  20. 10c.

    Tanaka F, Lerner RA, Barbas CF (1999) Chem Commun xx:1383

  21. 10d.

    Tanaka F, Lerner RA, Barbas CF (2000) J Am Chem Soc 122:4835

  22. 11.

    Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:12911

  23. 11b.

    Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:11273

  24. 12.

    Davis FA, Chen BC (1995) In: Helmchen G, Hoffman RW, Mulzer J, Schaumann E (eds), Houben Weyl: methods of Organic Chemistry. Georg Thieme Verlag: Stuttgart, Vol. E 21, p 4497

  25. 12b.

    Zhou P, Chen BC (1992) Chem Rev 92:919

  26. 13.

    Brown SP, Brochu MP, Sinz CJ, MacMillan DWC (2003) J Am Chem Soc 125:10808

  27. 14.

    Momiyama N, Yamamoto H (2003) J Am Chem Soc 125:6038

  28. 14b.

    Zuman P, Shah P (1994) Chem Rev 94:1621

  29. 14c.

    Vogt PF, Miller MJ (1998) Tetrahedron 54:1317

  30. 14d.

    Joghyuk L, Li C, Ann HW, George BR (2002) Chem Rev 102:1019

  31. 14e.

    Kumaragurubaran N, Juhl K, Zhuang W, Bogevig A, Jorgensen KA (2002) J Am Chem Soc 124:6254

  32. 15.

    List B (2002) J Am Chem Soc 124:5656

  33. 15b.

    Bogevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jorgensen KA (2002) Angew Chem Int Ed 41:1790

  34. 16.

    Zhong G (2003) Angew Chem Int Ed 42:4247

  35. 17.

    Eder U, Sauer G, Wiechert R (1971) Angew Chem Int Ed Engl 10:496

  36. 17b.

    Hajos ZG, Parrish DR (1974) J Org Chem 39:1615

  37. 18.

    Mathew SP, Iwamura H, Blackmond DG (2004) Angew Chem Int Ed 43:3317

  38. 18b.

    Iwamura H, Mathew SP, Blackmond DG (2004) J Am Chem Soc 126:11770

  39. 18c.

    Iwamura H, Wells DH, Mathew SP, Klussmann M, Armstrong A, Blackmond DG (2004) J Am Chem Soc 126:16312

  40. 19.

    Arno M, Domingo LR (2002) Theor Chem Acc 108:232

  41. 19b.

    Arno M, Domingo LR (2003) Org Biomol Chem 1:637

  42. 19c.

    Rankin KN, Gauld JW, Boyd RJ (2002) J Phys Chem A 106:5155

  43. 19d.

    Arno M, Zaragoza RJ, Domingo LR (2004) Tetrahedron: Asymmetry 15:1541

  44. 19e.

    Cheong PH, Houk KN (2004) J Am Chem Soc 126:13912

  45. 19f.

    Córdova A, Sundén H, Bøgevig A, Johansson M, Himo F (2004) Chem Eur J 10:3673

  46. 20.

    Zimmerman HE, Traxler MD (1957) J Am Chem Soc 79:1920

  47. 21.

    Li Y, Paddon-Row MN, Houk KN (1990) J Org Chem 55:481

  48. 22.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2003) Gaussian: Pittsburgh, PA

  49. 23.

    Becke AD (1993) J Chem Phys 98:1372

  50. 23b.

    Becke AD (1993) J Chem Phys 98:5648

  51. 24.

    Lee C, Yang W, Parr RG (1987) Phys Rev B 37:785

  52. 25.

    Mciver WJ (1974) Acc Chem Res 7:72

  53. 26.

    Cossi M, Barone V, Cammi R (1996) Tomasi J Chem Phys Lett 255:327

  54. 26b.

    Cances MT, Mennunci V, Tomasi J (1997) J Chem Phys 107:3032

  55. 26c.

    Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404

Download references

Acknowledgements

This work was supported by NKBRSF (Grant 1999075302), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant INF105-SCE-02-08), and NSFC (Grants 20373071, 20333050).

Author information

Correspondence to Hongming Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Yang, C. & Han, K. Density functional study of the l-proline-catalyzed α-aminoxylation of aldehydes reaction: The reaction mechanism and selectivity. Struct Chem 17, 97–104 (2006). https://doi.org/10.1007/s11224-006-9001-9

Download citation

Keywords

  • DFT calculations
  • Reaction mechanisms
  • Proline
  • Aminoxylation