Advertisement

Structural Chemistry

, Volume 16, Issue 4, pp 445–452 | Cite as

Design of Peptides with α,β-Dehydro Residues: Synthesis, Crystal Structure and Molecular Conformation of a Peptide N-Boc-Phe-ΔPhe-Ile-OCH3

  • R. Vijayaraghavan
  • V. K. Goel
  • S. Dey
  • T. P. SinghEmail author
Article

Abstract

To develop a complete set of design rules with α,β-dehydro residues, a tripeptide N-Boc-Phe-ΔPhe-Ile-OCH3 was synthesized. The synthesis was carried out in solution phase using azlactone procedure. The three-dimensional structure of the peptide was determined by X-ray diffraction method and refined to an R-factor of 0.085. The structure contains three peptide molecules in the asymmetric unit. In all the three crystallographically independent molecules ΔPhe residue adopts one of the three conformations that have been reported for a ΔPhe residue. The overall conformations of three peptide molecules in the asymmetric unit are not similar. Two out of three crystallographically independent molecules adopt type II β-turn conformations whereas the third molecule is found having the characteristic S-shaped conformation in which the values of dihedral angles φ, ψ have opposite signs alternately. One of these two types of conformations has been observed when a ΔPhe is introduced at (i+2) position of a tetrapeptide. The β-turn conformation is stabilized by a 4→1 hydrogen bond where the hydrophobic side chains of residues at (i+1) and (i+3) positions stabilized the unfolded conformation with van der Waals interactions. The three independent molecules are locked together by three hydrogen bonds between molecules A and B and two hydrogen bonds between molecules B and C.

Keywords

Peptide design X-ray diffraction ΔPhe residue conformation crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singh, T. P.; Kaur, P., Prog. Biophys. Mol. Biol. 1996, 66, 141.CrossRefPubMedGoogle Scholar
  2. 2.
    Richardson, J. S., Adv. Protein Chem. 1981, 34, 167.PubMedGoogle Scholar
  3. 3.
    Singh, T. P.; Haridas, M.; Chauhan, V. S.; Kumar, A., Biopolymers 1987, 26, 816.CrossRefGoogle Scholar
  4. 4.
    Singh, T. P.; Haridas, M.; Chauhan, V. S.; Kumar, A.; Viterbo, D., Biopolymers 1988, 27, 1333.CrossRefGoogle Scholar
  5. 5.
    Goel, V. K.; Baxla, A. P., Guha, M.; Dey, S.; Singh, T. P., J. Mol. Struct. 2003, 658, 135.CrossRefGoogle Scholar
  6. 6.
    Mitra, S. N.; Dey, S.; Bhatia, S.; Singh, T. P., Int. J. Biol. Macromol. 1996, 19, 103.CrossRefPubMedGoogle Scholar
  7. 7.
    Dey, S.; Mitra, S. N.; Singh, T. P., Int. J. Peptide Protein Res. 1996, 48, 123.Google Scholar
  8. 8.
    Makker, J.; Dey, S.; Kumar, P.; Singh, T. P., Z. Kristallogr. NCS 2003, 218, 124.Google Scholar
  9. 9.
    Sheldrick, G. M., SHELXS-97; University of Goettingen: Germany, 1997.Google Scholar
  10. 10.
    Sheldrick, G. M., SHELXL-97; University of Goettingen: Germany, 1997.Google Scholar
  11. 11.
    Cromer, D. T.; Mann, J. B., Acta Cryst. 1968, A24, 321.Google Scholar
  12. 12.
    Stewart, R. F.; Davidson, E. R.; Simpson, W. T., J. Chem. Phys. 1965, 42, 3175.CrossRefGoogle Scholar
  13. 13.
    Dickerson, R. E.; Geis, I., The Structure and Action of Proteins; Harper and Row: New York, USA, 1969, p. 13.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • R. Vijayaraghavan
    • 1
  • V. K. Goel
    • 1
  • S. Dey
    • 1
  • T. P. Singh
    • 1
    Email author
  1. 1.Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations