Advertisement

Structural Chemistry

, Volume 16, Issue 1, pp 77–79 | Cite as

Polyynes vs. Cumulenes: Their Possible Use as Molecular Wires

  • Ibon Alkorta
  • José ElgueroEmail author
Article

Abstract

Polyynes and cumulenes from 2–12 atoms have been calculated at the B3LYP/6-311++G** level and their energies compared using an isodesmic reaction. The chain length has been modeled empirically affording an equation that predicts substantial variation for long chains.

KEY WORDS:

Acetylene cumulene polyynes carbon allotrope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sacks, O. Oncle Tungsten, Memories of a Chemical Boyhood; Picador, 2001, p. 224.Google Scholar
  2. 2.
    Greenwood, N. N., Earnshaw, A. Chemistry of Elements; Pergamon: Oxford, 1984.Google Scholar
  3. 3.
    Dresselhaus, M., Dresselhaus, G., Eklund, P. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications; Academic: New York, 1996; Kadish, K. M., Ruoff, R. S. Fullerenes: Chemistry, Physics, and Technology; Wiley-Interscience: New York, 2000.Google Scholar
  4. 4.
    Merz, K. M., Hoffmann, R., Balaban, A. T. J. Am. Chem. Soc. 1987, 109, 6742–6751. Bucknum, M. J., Hoffmann, R. J. Am. Chem. Soc. 1994, 116, 11456–11464.Google Scholar
  5. 5.
    Johnston, R. L., Hoffmann, R. J. Am. Chem. Soc. 1989, 111, 810–819.Google Scholar
  6. 6.
    Karfunkel, H. R., Dressier, T. J. Am. Chem. Soc. 1992, 114, 2285–2288.Google Scholar
  7. 7.
    Balaban, A. T., Klein, D. J., Folden, C. A. Chem. Phys. Lett. 1993, 277, 266–270.Google Scholar
  8. 8.
    Kusner, R. B., Lahti, P. M., Lillya, C. P. Chem. Phys. Lett. 1995, 241, 522–527.Google Scholar
  9. 9.
    Narita, N., Nagai, S., Suzuki, S., Nakao, K. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 58, 11009–11014.Google Scholar
  10. 10.
    Fayos, J. J. Solid State Chem. 1999, 148, 278–285.Google Scholar
  11. 11.
    Heimann, R. B., Evsyukov, S. E., Kavan, L., Eds. Physics and Chemistry of Materials with Low-Dimensional Structures, Carbyne and Carbynoid Structures; Kluwer: Dordrecht, The Netherlands, 1999; Vol. 21.Google Scholar
  12. 12.
    Whittaker, A. G. Science 1978, 200, 763–764.Google Scholar
  13. 13.
    Diederich, R., Rubin, Y. Angew. Chem., Int. Ed. Engl. 1992, 31, 1101–1123.Google Scholar
  14. 14.
    Lagow, R. J., Kampa, J. J., Wei, H.-C., Battle, S. L., Genge, J. W., Laude, D. A., Harper, C. J., Bau, R., Stevens, R. C., Haw, J. R; Munson, E. Science 1995, 267, 362–367.Google Scholar
  15. 15.
    Lagow, R. J. (USA). PCT Int. Appl. WO 9622314 Al 25 Jul 1996, 36 pp. Chem. Abstr. 1996, 125, 196763.Google Scholar
  16. 16.
    Bartik, T., Bartik, B., Brady, M., Dembinski, R., Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1996, 35, 414–417.Google Scholar
  17. 17.
    Schermann, G., Grosser, T., Hampel, R., Hirsch, A. Chem.-Eur. J. 1997, 3, 1105–1112.Google Scholar
  18. 18.
    Elguero, J., Foces-Foces, C., Llamas-Saiz, A. L. Bull. Soc. Chim. Belg. 1992, 101, 795–799.Google Scholar
  19. 19.
    Kawai, T., Miyamoto, Y., Sugino, O., Koga, Y. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, R16349–R16352.Google Scholar
  20. 20.
    Diederich, F., Rubin, Y., Knobler, C., Whetten, R. L., Schriver, K. E., Houk, K. N., Li, Y. Science 1989, 245, 1088–1090.Google Scholar
  21. 21.
    Parasuk, V., Almlof, J., Feyereisen, M. W. J. Am. Chem. Soc. 1991, 113, 1049–1050.Google Scholar
  22. 22.
    Plattner, D. A., Houk, K. N. J. Am. Chem. Soc. 1995, 117, 4405–4406.Google Scholar
  23. 23.
    Martin, J. M. L., El-Yazal, J., Francois, J.-P. Chem. Phys. Lett. 1995, 242, 570–579.Google Scholar
  24. 24.
    Zahradnik, R., Hobza, P., Burcl, R., Andes Hess, B. Jr., Radziszewski, J. G. THEOCHEM 1994, 119, 335–349.Google Scholar
  25. 25.
    Mölder, U., Burk, P., Koppel, I. A. Int. J. Quant. Chem. 2001, 82, 73–85.Google Scholar
  26. 26.
    Horny, L., Petraco, N. D. K., Schaefer, H. F. III. J. Am. Chem. Soc. 2002, 124, 14716–14720.Google Scholar
  27. 27.
    Zahradnik, R., Sroubková, L. Helv. Chim. Acta 2003, 86, 979–1000.Google Scholar
  28. 28.
    Cataldo, F. Polym. Int. 1999, 44, 191–200.Google Scholar
  29. 29.
    Diederich, F., Martin, R. E. Angew. Chem. Int. Ed. 1999, 38, 1350–1377.Google Scholar
  30. 30.
    Mayor, M., Büschel, M., Fromm, K. M., Lehn, J.-M., Daub, J. Chem. Eur. J. 2001, 7, 1266–1272.Google Scholar
  31. 31.
    Utesh, N. F., Diederich, F. Org. Biomol. Chem. 2003, 1, 237–239.Google Scholar
  32. 32.
    Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652; Lee, C., Yang, W., Parr, R. G. Phys. Rev. B 1988, 37, 785–789.Google Scholar
  33. 33.
    Ditchfield, R., Hehre, W. J., Pople, J. A. J. Chem. Phys. 1971, 54, 724–728; Frisch, M. J., Pople, J. A., Krishnam, R., Binkley, J. S. J. Chem. Phys. 1984, 80, 3265–3269.Google Scholar
  34. 34.
    Gaussian 98, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, Al-Laham, M. A., C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, Head-Gordon, M., E. S. Replogle, J. A. Pople, Eds., Gaussian Inc.: Pittsburgh, PA, 1998.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute de Química MédicaCSIC, Juan de la CiervaMadridSpain

Personalised recommendations